Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08584
Cited By
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
24 January 2019
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks"
50 / 239 papers shown
Title
Neural Multivariate Regression: Qualitative Insights from the Unconstrained Feature Model
George Andriopoulos
Soyuj Jung Basnet
Juan Guevara
Li Guo
Keith Ross
30
0
0
14 May 2025
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Jingfu Peng
MoMe
37
0
0
05 May 2025
A Comprehensive Survey of Synthetic Tabular Data Generation
Ruxue Shi
Yili Wang
Mengnan Du
Xu Shen
Xin Wang
49
2
0
23 Apr 2025
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Antoine Ledent
Peng Liu
FAtt
109
0
0
20 Feb 2025
Feature Learning Beyond the Edge of Stability
Dávid Terjék
MLT
46
0
0
18 Feb 2025
SNeRV: Spectra-preserving Neural Representation for Video
Jina Kim
Jihoo Lee
Je-Won Kang
43
3
0
03 Jan 2025
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
135
0
0
08 Nov 2024
Towards Understanding Why FixMatch Generalizes Better Than Supervised Learning
Jingyang Li
Jiachun Pan
Vincent Y. F. Tan
Kim-Chuan Toh
Pan Zhou
AAML
MLT
48
0
0
15 Oct 2024
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
33
2
0
11 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
Tuning Frequency Bias of State Space Models
Annan Yu
Dongwei Lyu
S. H. Lim
Michael W. Mahoney
N. Benjamin Erichson
47
3
0
02 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
49
0
0
24 Aug 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
44
2
0
18 Jul 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
52
0
0
11 Jun 2024
On the Rashomon ratio of infinite hypothesis sets
Evzenie Coupkova
Mireille Boutin
37
1
0
27 Apr 2024
Implicit Bias of AdamW:
ℓ
∞
\ell_\infty
ℓ
∞
Norm Constrained Optimization
Shuo Xie
Zhiyuan Li
OffRL
50
13
0
05 Apr 2024
Grounding and Enhancing Grid-based Models for Neural Fields
Zelin Zhao
Fenglei Fan
Wenlong Liao
Junchi Yan
39
5
0
29 Mar 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
39
3
0
19 Mar 2024
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
41
4
0
12 Mar 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
45
0
0
08 Feb 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
38
4
0
07 Feb 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurelien Lucchi
Anastasis Kratsios
David Belius
40
8
0
02 Feb 2024
\emph{Lifted} RDT based capacity analysis of the 1-hidden layer treelike \emph{sign} perceptrons neural networks
M. Stojnic
27
1
0
13 Dec 2023
Capacity of the treelike sign perceptrons neural networks with one hidden layer -- RDT based upper bounds
M. Stojnic
21
4
0
13 Dec 2023
Gradual Domain Adaptation: Theory and Algorithms
Yifei He
Haoxiang Wang
Bo Li
Han Zhao
CLL
52
6
0
20 Oct 2023
Gradient constrained sharpness-aware prompt learning for vision-language models
Liangchen Liu
Nannan Wang
Dawei Zhou
Xinbo Gao
Decheng Liu
Xi Yang
Tongliang Liu
VLM
33
2
0
14 Sep 2023
How to Protect Copyright Data in Optimization of Large Language Models?
T. Chu
Zhao Song
Chiwun Yang
40
29
0
23 Aug 2023
Understanding Deep Neural Networks via Linear Separability of Hidden Layers
Chao Zhang
Xinyuan Chen
Wensheng Li
Lixue Liu
Wei Wu
Dacheng Tao
28
3
0
26 Jul 2023
Efficient SGD Neural Network Training via Sublinear Activated Neuron Identification
Lianke Qin
Zhao Song
Yuanyuan Yang
25
9
0
13 Jul 2023
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
36
6
0
07 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
29
4
0
26 May 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
Tight conditions for when the NTK approximation is valid
Enric Boix-Adserà
Etai Littwin
30
0
0
22 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
44
13
0
11 May 2023
On the Eigenvalue Decay Rates of a Class of Neural-Network Related Kernel Functions Defined on General Domains
Yicheng Li
Zixiong Yu
Y. Cotronis
Qian Lin
55
13
0
04 May 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
26
1
0
06 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
37
30
0
27 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
46
0
0
24 Mar 2023
Learning Fractals by Gradient Descent
Cheng-Hao Tu
Hong-You Chen
David Carlyn
Wei-Lun Chao
23
2
0
14 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Reinforcement Learning with Function Approximation: From Linear to Nonlinear
Jihao Long
Jiequn Han
27
5
0
20 Feb 2023
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity
Hongkang Li
Hao Wu
Sijia Liu
Pin-Yu Chen
ViT
MLT
37
57
0
12 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
40
10
0
03 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
64
2
0
02 Feb 2023
Width and Depth Limits Commute in Residual Networks
Soufiane Hayou
Greg Yang
42
14
0
01 Feb 2023
Supervision Complexity and its Role in Knowledge Distillation
Hrayr Harutyunyan
A. S. Rawat
A. Menon
Seungyeon Kim
Surinder Kumar
30
12
0
28 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
36
61
0
26 Jan 2023
Convergence beyond the over-parameterized regime using Rayleigh quotients
David A. R. Robin
Kevin Scaman
Marc Lelarge
27
3
0
19 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
1
2
3
4
5
Next