Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.00740
Cited By
v1
v2 (latest)
Disentangling Adversarial Robustness and Generalization
3 December 2018
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Disentangling Adversarial Robustness and Generalization"
50 / 180 papers shown
Title
Generalized Real-World Super-Resolution through Adversarial Robustness
Angela Castillo
María Escobar
Juan C. Pérez
Andrés Romero
Radu Timofte
Luc Van Gool
Pablo Arbelaez
77
16
0
25 Aug 2021
Improving Visual Quality of Unrestricted Adversarial Examples with Wavelet-VAE
Wenzhao Xiang
Chang-rui Liu
Shibao Zheng
44
2
0
25 Aug 2021
Semantic Perturbations with Normalizing Flows for Improved Generalization
Oğuz Kaan Yüksel
Sebastian U. Stich
Martin Jaggi
Tatjana Chavdarova
AAML
79
10
0
18 Aug 2021
Out-of-Domain Generalization from a Single Source: An Uncertainty Quantification Approach
Xi Peng
Fengchun Qiao
Long Zhao
OOD
126
36
0
05 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
162
241
0
01 Aug 2021
Adversarial Attacks with Time-Scale Representations
Alberto Santamaria-Pang
Jia-dong Qiu
Aritra Chowdhury
James R. Kubricht
Peter Tu
Iyer Naresh
Nurali Virani
AAML
MLAU
47
0
0
26 Jul 2021
Uncertainty-Aware Reliable Text Classification
Yibo Hu
Latifur Khan
EDL
UQCV
74
33
0
15 Jul 2021
A Closer Look at the Adversarial Robustness of Information Bottleneck Models
I. Korshunova
David Stutz
Alexander A. Alemi
Olivia Wiles
Sven Gowal
49
3
0
12 Jul 2021
GAN-based Data Augmentation for Chest X-ray Classification
Shobhita Sundaram
Neha Hulkund
MedIm
77
36
0
07 Jul 2021
On Generalization of Graph Autoencoders with Adversarial Training
Tianjin Huang
Yulong Pei
Vlado Menkovski
Mykola Pechenizkiy
GNN
119
6
0
06 Jul 2021
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
105
136
0
21 Jun 2021
The Dimpled Manifold Model of Adversarial Examples in Machine Learning
A. Shamir
Odelia Melamed
Oriel BenShmuel
AAML
96
50
0
18 Jun 2021
Attacking Adversarial Attacks as A Defense
Boxi Wu
Heng Pan
Li Shen
Jindong Gu
Shuai Zhao
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
AAML
93
32
0
09 Jun 2021
A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
80
44
0
03 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
87
9
0
31 May 2021
Adversarial Robustness against Multiple and Single
l
p
l_p
l
p
-Threat Models via Quick Fine-Tuning of Robust Classifiers
Francesco Croce
Matthias Hein
OOD
AAML
67
18
0
26 May 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David Wagner
Trevor Darrell
AAML
119
27
0
18 May 2021
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
247
273
0
18 Apr 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
68
18
0
16 Apr 2021
Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach
Simiao Zuo
Chen Liang
Haoming Jiang
Xiaodong Liu
Pengcheng He
Jianfeng Gao
Weizhu Chen
T. Zhao
116
9
0
11 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
105
67
0
09 Apr 2021
Adversarial Feature Augmentation and Normalization for Visual Recognition
Tianlong Chen
Yu Cheng
Zhe Gan
Jianfeng Wang
Lijuan Wang
Zhangyang Wang
Jingjing Liu
AAML
ViT
71
19
0
22 Mar 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
98
34
0
15 Mar 2021
Uncertainty-guided Model Generalization to Unseen Domains
Fengchun Qiao
Xi Peng
OOD
UQCV
90
61
0
12 Mar 2021
Hard-label Manifolds: Unexpected Advantages of Query Efficiency for Finding On-manifold Adversarial Examples
Washington Garcia
Pin-Yu Chen
S. Jha
Scott Clouse
Kevin R. B. Butler
AAML
43
0
0
04 Mar 2021
On the effectiveness of adversarial training against common corruptions
Klim Kireev
Maksym Andriushchenko
Nicolas Flammarion
AAML
72
103
0
03 Mar 2021
Adversarial Examples can be Effective Data Augmentation for Unsupervised Machine Learning
Chia-Yi Hsu
Pin-Yu Chen
Songtao Lu
Sijia Liu
Chia-Mu Yu
AAML
91
11
0
02 Mar 2021
Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective
Tianlong Chen
Yu Cheng
Zhe Gan
Jingjing Liu
Zhangyang Wang
82
52
0
28 Feb 2021
Generating Structured Adversarial Attacks Using Frank-Wolfe Method
Ehsan Kazemi
Thomas Kerdreux
Liquang Wang
AAML
DiffM
48
1
0
15 Feb 2021
Adversarial Perturbations Are Not So Weird: Entanglement of Robust and Non-Robust Features in Neural Network Classifiers
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
56
13
0
09 Feb 2021
Noisy Recurrent Neural Networks
Soon Hoe Lim
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
93
54
0
09 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
192
496
0
02 Feb 2021
Online Adversarial Purification based on Self-Supervision
Changhao Shi
Chester Holtz
Zhengchao Wan
AAML
82
57
0
23 Jan 2021
Analysis of Dominant Classes in Universal Adversarial Perturbations
Jon Vadillo
Roberto Santana
Jose A. Lozano
AAML
54
5
0
28 Dec 2020
A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via Adversarial Fine-tuning
Ahmadreza Jeddi
M. Shafiee
A. Wong
AAML
82
40
0
25 Dec 2020
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
134
24
0
19 Nov 2020
Defense-friendly Images in Adversarial Attacks: Dataset and Metrics for Perturbation Difficulty
Camilo Pestana
Wei Liu
D. Glance
Ajmal Mian
AAML
121
5
0
05 Nov 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
87
8
0
03 Nov 2020
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
Haoming Jiang
Yuchen Zhuang
Jie Lyu
T. Zhao
Chao Zhang
OODD
91
26
0
22 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
95
23
0
15 Oct 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
Soheil Feizi
AAML
121
60
0
05 Sep 2020
Trace-Norm Adversarial Examples
Ehsan Kazemi
Thomas Kerdreux
Liqiang Wang
59
2
0
02 Jul 2020
Bit Error Robustness for Energy-Efficient DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
MQ
52
1
0
24 Jun 2020
A general framework for defining and optimizing robustness
Alessandro Tibo
M. Jaeger
Kim G. Larsen
22
0
0
19 Jun 2020
Calibrated neighborhood aware confidence measure for deep metric learning
Maryna Karpusha
Sunghee Yun
István Fehérvári
UQCV
FedML
121
2
0
08 Jun 2020
Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing
Vishaal Krishnan
Abed AlRahman Al Makdah
Fabio Pasqualetti
OOD
AAML
78
23
0
05 Jun 2020
Evaluating the Disentanglement of Deep Generative Models through Manifold Topology
Sharon Zhou
E. Zelikman
F. Lu
A. Ng
Gunnar Carlsson
Stefano Ermon
DRL
61
27
0
05 Jun 2020
ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds
Kibok Lee
Zhuoyuan Chen
Xinchen Yan
R. Urtasun
Ersin Yumer
3DPC
66
32
0
24 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
122
151
0
20 May 2020
Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data
Lu Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Yuan Jiang
AAML
82
12
0
11 May 2020
Previous
1
2
3
4
Next