Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.00740
Cited By
Disentangling Adversarial Robustness and Generalization
3 December 2018
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentangling Adversarial Robustness and Generalization"
50 / 62 papers shown
Title
Passive Deepfake Detection Across Multi-modalities: A Comprehensive Survey
Hong-Hanh Nguyen-Le
Van-Tuan Tran
Dinh-Thuc Nguyen
Nhien-An Le-Khac
AAML
110
1
0
26 Nov 2024
ADBM: Adversarial diffusion bridge model for reliable adversarial purification
Xiao-Li Li
Wenxuan Sun
Huanran Chen
Qiongxiu Li
Yining Liu
Yingzhe He
Jie Shi
Xiaolin Hu
AAML
58
7
0
01 Aug 2024
Exploiting the Layered Intrinsic Dimensionality of Deep Models for Practical Adversarial Training
Enes Altinisik
Safa Messaoud
H. Sencar
Hassan Sajjad
Sanjay Chawla
AAML
48
0
0
27 May 2024
Rényi Neural Processes
Xuesong Wang
He Zhao
Edwin V. Bonilla
UQCV
BDL
32
0
0
25 May 2024
Training Image Derivatives: Increased Accuracy and Universal Robustness
V. Avrutskiy
46
0
0
21 Oct 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
René Vidal
26
8
0
28 Sep 2023
Input margins can predict generalization too
Coenraad Mouton
Marthinus W. Theunissen
Marelie Hattingh Davel
AAML
UQCV
AI4CE
23
3
0
29 Aug 2023
Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training
Yechao Zhang
Shengshan Hu
Leo Yu Zhang
Junyu Shi
Minghui Li
Xiaogeng Liu
Wei Wan
Hai Jin
AAML
22
21
0
15 Jul 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
24
208
0
09 Feb 2023
Towards Adversarial Realism and Robust Learning for IoT Intrusion Detection and Classification
João Vitorino
Isabel Praça
Eva Maia
AAML
29
28
0
30 Jan 2023
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
42
59
0
14 Dec 2022
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
34
3
0
08 Dec 2022
Learning Antidote Data to Individual Unfairness
Peizhao Li
Ethan Xia
Hongfu Liu
FedML
FaML
19
9
0
29 Nov 2022
Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack
Yunfeng Diao
He-Nan Wang
Tianjia Shao
Yong-Liang Yang
Kun Zhou
David C. Hogg
Meng Wang
AAML
37
6
0
21 Nov 2022
Textual Manifold-based Defense Against Natural Language Adversarial Examples
D. M. Nguyen
Anh Tuan Luu
AAML
19
17
0
05 Nov 2022
An Adversarial Robustness Perspective on the Topology of Neural Networks
Morgane Goibert
Thomas Ricatte
Elvis Dohmatob
AAML
11
2
0
04 Nov 2022
Adversarial Purification with the Manifold Hypothesis
Zhaoyuan Yang
Zhiwei Xu
Jing Zhang
Richard I. Hartley
Peter Tu
AAML
21
5
0
26 Oct 2022
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Biwei Huang
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Distance Learner: Incorporating Manifold Prior to Model Training
Aditya Chetan
Nipun Kwatra
21
1
0
14 Jul 2022
Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations
Tianlong Chen
Peihao Wang
Zhiwen Fan
Zhangyang Wang
36
55
0
04 Jul 2022
Domain Generalization via Selective Consistency Regularization for Time Series Classification
Wenyu Zhang
Mohamed Ragab
Chuan-Sheng Foo
OOD
AI4TS
21
2
0
16 Jun 2022
On Fragile Features and Batch Normalization in Adversarial Training
Nils Philipp Walter
David Stutz
Bernt Schiele
AAML
19
5
0
26 Apr 2022
A Manifold View of Adversarial Risk
Wen-jun Zhang
Yikai Zhang
Xiaoling Hu
Mayank Goswami
Chao Chen
Dimitris N. Metaxas
AAML
19
6
0
24 Mar 2022
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
48
10
0
09 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min-Bin Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
30
119
0
21 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
17
3
0
05 Feb 2022
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness?
Xinhsuai Dong
Anh Tuan Luu
Min-Bin Lin
Shuicheng Yan
Hanwang Zhang
SILM
AAML
20
55
0
22 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
24
4
0
14 Nov 2021
ε-weakened Robustness of Deep Neural Networks
Pei Huang
Yuting Yang
Minghao Liu
Fuqi Jia
Feifei Ma
Jian Zhang
AAML
19
18
0
29 Oct 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
35
4
0
16 Sep 2021
Improving Visual Quality of Unrestricted Adversarial Examples with Wavelet-VAE
Wenzhao Xiang
Chang-rui Liu
Shibao Zheng
23
2
0
25 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Uncertainty-Aware Reliable Text Classification
Yibo Hu
Latifur Khan
EDL
UQCV
33
33
0
15 Jul 2021
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
23
131
0
21 Jun 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
26
26
0
18 May 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
22
18
0
16 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
29
65
0
09 Apr 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
38
34
0
15 Mar 2021
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
48
24
0
19 Nov 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
46
8
0
03 Nov 2020
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
Haoming Jiang
Yuchen Zhuang
Jie Lyu
T. Zhao
Chao Zhang
OODD
19
26
0
22 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
16
22
0
15 Oct 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
147
0
20 May 2020
Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data
Lu Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Yuan Jiang
AAML
27
12
0
11 May 2020
Adversarial Training against Location-Optimized Adversarial Patches
Sukrut Rao
David Stutz
Bernt Schiele
AAML
11
91
0
05 May 2020
Towards Feature Space Adversarial Attack
Qiuling Xu
Guanhong Tao
Shuyang Cheng
Xinming Zhang
GAN
AAML
25
25
0
26 Apr 2020
Learning to Learn Single Domain Generalization
Fengchun Qiao
Long Zhao
Xi Peng
OOD
31
431
0
30 Mar 2020
1
2
Next