ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.02658
11
6

On Generalization of Graph Autoencoders with Adversarial Training

6 July 2021
Tianjin Huang
Yulong Pei
Vlado Menkovski
Mykola Pechenizkiy
    GNN
ArXivPDFHTML
Abstract

Adversarial training is an approach for increasing model's resilience against adversarial perturbations. Such approaches have been demonstrated to result in models with feature representations that generalize better. However, limited works have been done on adversarial training of models on graph data. In this paper, we raise such a question { does adversarial training improve the generalization of graph representations. We formulate L2 and L1 versions of adversarial training in two powerful node embedding methods: graph autoencoder (GAE) and variational graph autoencoder (VGAE). We conduct extensive experiments on three main applications, i.e. link prediction, node clustering, graph anomaly detection of GAE and VGAE, and demonstrate that both L2 and L1 adversarial training boost the generalization of GAE and VGAE.

View on arXiv
Comments on this paper