Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
50 / 468 papers shown
Title
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
215
0
03 Dec 2019
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
21
131
0
03 Nov 2019
Global Convergence of Gradient Descent for Deep Linear Residual Networks
Lei Wu
Qingcan Wang
Chao Ma
ODL
AI4CE
28
22
0
02 Nov 2019
Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators
Reinhard Heckel
Mahdi Soltanolkotabi
DiffM
37
81
0
31 Oct 2019
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Kyunghyun Cho
31
51
0
24 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks
Spencer Frei
Yuan Cao
Quanquan Gu
ODL
9
31
0
07 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Overparameterized Neural Networks Implement Associative Memory
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
35
71
0
26 Sep 2019
Towards Understanding the Transferability of Deep Representations
Hong Liu
Mingsheng Long
Jianmin Wang
Michael I. Jordan
30
25
0
26 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
29
113
0
25 Sep 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
31
83
0
18 Sep 2019
Stochastic AUC Maximization with Deep Neural Networks
Mingrui Liu
Zhuoning Yuan
Yiming Ying
Tianbao Yang
17
103
0
28 Aug 2019
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adria Ruiz
Jakob Verbeek
VLM
30
22
0
19 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
60
626
0
14 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
21
92
0
24 Jul 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
8
763
0
26 Jun 2019
Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors
Gauri Jagatap
C. Hegde
26
70
0
20 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
21
88
0
12 Jun 2019
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers
Ari S. Morcos
Haonan Yu
Michela Paganini
Yuandong Tian
16
228
0
06 Jun 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
34
383
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
23
270
0
30 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
89
0
29 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
18
5
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
50
0
19 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Rethinking Arithmetic for Deep Neural Networks
George A. Constantinides
34
4
0
07 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
47
905
0
26 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
37
22
0
10 Apr 2019
Correlation Congruence for Knowledge Distillation
Baoyun Peng
Xiao Jin
Jiaheng Liu
Shunfeng Zhou
Yichao Wu
Yu Liu
Dongsheng Li
Zhaoning Zhang
63
507
0
03 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
28
181
0
01 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
R. Tibshirani
31
728
0
19 Mar 2019
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
22
82
0
11 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
37
61
0
06 Mar 2019
LipschitzLR: Using theoretically computed adaptive learning rates for fast convergence
Rahul Yedida
Snehanshu Saha
Tejas Prashanth
ODL
25
12
0
20 Feb 2019
Understanding over-parameterized deep networks by geometrization
Xiao Dong
Ling Zhou
GNN
AI4CE
21
7
0
11 Feb 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
24
94
0
28 Jan 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
34
40
0
25 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Previous
1
2
3
...
10
8
9
Next