ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.11165
  4. Cited By
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration

GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration

28 September 2018
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
    GP
ArXivPDFHTML

Papers citing "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration"

50 / 207 papers shown
Title
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
  Sequence Modeling
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDL
UQCV
29
99
0
09 Jul 2022
Parametric and Multivariate Uncertainty Calibration for Regression and
  Object Detection
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
39
8
0
04 Jul 2022
Tree ensemble kernels for Bayesian optimization with known constraints
  over mixed-feature spaces
Tree ensemble kernels for Bayesian optimization with known constraints over mixed-feature spaces
Alexander Thebelt
Calvin Tsay
Robert M. Lee
Nathan Sudermann-Merx
David Walz
B. Shafei
Ruth Misener
UQCV
BDL
50
10
0
02 Jul 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural
  Tangent Kernels
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
35
20
0
25 Jun 2022
Joint Entropy Search for Maximally-Informed Bayesian Optimization
Joint Entropy Search for Maximally-Informed Bayesian Optimization
Carl Hvarfner
Frank Hutter
Luigi Nardi
46
36
0
09 Jun 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
31
20
0
09 Jun 2022
Integrating Random Effects in Deep Neural Networks
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
40
21
0
07 Jun 2022
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
83
19
0
30 May 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
27
6
0
30 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
33
22
0
20 May 2022
ODBO: Bayesian Optimization with Search Space Prescreening for Directed
  Protein Evolution
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Lixue Cheng
Ziyi Yang
Chang-Yu Hsieh
Ben Liao
Shengyu Zhang
32
6
0
19 May 2022
Universal characteristics of deep neural network loss surfaces from
  random matrix theory
Universal characteristics of deep neural network loss surfaces from random matrix theory
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
Diego Granziol
34
4
0
17 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
32
4
0
15 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed
  Torque Control
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
22
3
0
10 May 2022
Machine Learning Diffusion Monte Carlo Energies
Machine Learning Diffusion Monte Carlo Energies
Kevin Ryczko
J. Krogel
Isaac Tamblyn
DiffM
16
14
0
09 May 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
43
90
0
23 Mar 2022
A novel sampler for Gauss-Hermite determinantal point processes with
  application to Monte Carlo integration
A novel sampler for Gauss-Hermite determinantal point processes with application to Monte Carlo integration
Nicholas P. Baskerville
35
0
0
15 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
26
10
0
02 Mar 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep
  Image Prior
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
48
10
0
28 Feb 2022
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
49
11
0
22 Feb 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
44
60
0
14 Feb 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
24
3
0
03 Feb 2022
Posterior temperature optimized Bayesian models for inverse problems in
  medical imaging
Posterior temperature optimized Bayesian models for inverse problems in medical imaging
M. Laves
Malte Tolle
Alexander Schlaefer
Sandy Engelhardt
48
10
0
02 Feb 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
29
2
0
02 Feb 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
61
70
0
28 Jan 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
33
1,190
0
14 Jan 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
35
10
0
31 Dec 2021
GPEX, A Framework For Interpreting Artificial Neural Networks
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
52
4
0
18 Dec 2021
BoGraph: Structured Bayesian Optimization From Logs for Expensive
  Systems with Many Parameters
BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters
Sami Alabed
Eiko Yoneki
23
7
0
16 Dec 2021
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality
  Forecasting
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
Abdulmajid Murad
F. Kraemer
Kerstin Bach
Gavin Taylor
OOD
BDL
UQCV
25
12
0
05 Dec 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
29
3
0
19 Nov 2021
Positional Encoder Graph Neural Networks for Geographic Data
Positional Encoder Graph Neural Networks for Geographic Data
Konstantin Klemmer
Nathan Safir
Daniel B. Neill
GNN
30
34
0
19 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
25
10
0
08 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
29
20
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
24
31
0
02 Nov 2021
Geometry-aware Bayesian Optimization in Robotics using Riemannian
  Matérn Kernels
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier
Viacheslav Borovitskiy
A. Smolensky
Alexander Terenin
Tamim Asfour
Leonel Rozo
34
35
0
02 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Learning Robust Controllers Via Probabilistic Model-Based Policy Search
Learning Robust Controllers Via Probabilistic Model-Based Policy Search
V. Charvet
B. S. Jensen
R. Murray-Smith
19
2
0
26 Oct 2021
Incremental Ensemble Gaussian Processes
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
55
25
0
13 Oct 2021
Probabilistic Metamodels for an Efficient Characterization of Complex
  Driving Scenarios
Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
34
9
0
06 Oct 2021
Approximate Latent Force Model Inference
Approximate Latent Force Model Inference
Jacob Moss
Felix L. Opolka
Bianca Dumitrascu
Pietro Lio
54
3
0
24 Sep 2021
Barely Biased Learning for Gaussian Process Regression
Barely Biased Learning for Gaussian Process Regression
David R. Burt
A. Artemev
Mark van der Wilk
21
0
0
20 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
  Safety-Critical Applications
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
32
18
0
06 Sep 2021
Adversarial Attack for Uncertainty Estimation: Identifying Critical
  Regions in Neural Networks
Adversarial Attack for Uncertainty Estimation: Identifying Critical Regions in Neural Networks
Ismail Alarab
S. Prakoonwit
AAML
27
14
0
15 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
19
18
0
08 Jul 2021
CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
  Series Imputation
CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Y. Tashiro
Jiaming Song
Yang Song
Stefano Ermon
BDL
DiffM
27
516
0
07 Jul 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
Previous
12345
Next