ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.11165
  4. Cited By
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration

GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration

28 September 2018
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
    GP
ArXivPDFHTML

Papers citing "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration"

50 / 207 papers shown
Title
Time-Varying Transition Matrices with Multi-task Gaussian Processes
Time-Varying Transition Matrices with Multi-task Gaussian Processes
Ekin Ugurel
16
0
0
20 Jun 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
  Estimation for Latent Gaussian Models
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Computationally Efficient Data-Driven MPC for Agile Quadrotor Flight
Computationally Efficient Data-Driven MPC for Agile Quadrotor Flight
Wonoo Choo
E. Kayacan
30
0
0
26 May 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
66
1
0
26 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Inverse Protein Folding Using Deep Bayesian Optimization
Natalie Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
37
2
0
25 May 2023
Kernel Interpolation with Sparse Grids
Kernel Interpolation with Sparse Grids
Mohit Yadav
Daniel Sheldon
Cameron Musco
23
5
0
23 May 2023
Uniform approximation of common Gaussian process kernels using
  equispaced Fourier grids
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
28
7
0
18 May 2023
A Global-Local Approximation Framework for Large-Scale Gaussian Process
  Modeling
A Global-Local Approximation Framework for Large-Scale Gaussian Process Modeling
Akhil Vakayil
Roshan Joseph
30
2
0
17 May 2023
Expressive Mortality Models through Gaussian Process Kernels
Expressive Mortality Models through Gaussian Process Kernels
M. Ludkovski
Jimmy Risk
26
1
0
02 May 2023
Learning battery model parameter dynamics from data with recursive
  Gaussian process regression
Learning battery model parameter dynamics from data with recursive Gaussian process regression
A. Aitio
Dominik Jöst
D. Sauer
David A. Howey
19
5
0
26 Apr 2023
Ensemble Gaussian Processes for Adaptive Autonomous Driving on
  Multi-friction Surfaces
Ensemble Gaussian Processes for Adaptive Autonomous Driving on Multi-friction Surfaces
Tomávs Nagy
Ahmad Amine
Truong X. Nghiem
Ugo Rosolia
Zirui Zang
Rahul Mangharam
37
7
0
23 Mar 2023
A High-Performance Accelerator for Super-Resolution Processing on
  Embedded GPU
A High-Performance Accelerator for Super-Resolution Processing on Embedded GPU
W. Zhao
Qi Sun
Yang Bai
Wenbo Li
Haisheng Zheng
Bei Yu
Martin D. F. Wong
SupR
47
8
0
16 Mar 2023
Gaussian Max-Value Entropy Search for Multi-Agent Bayesian Optimization
Gaussian Max-Value Entropy Search for Multi-Agent Bayesian Optimization
Haitong Ma
Tianpeng Zhang
Yixuan Wu
Flavio du Pin Calmon
Na Li
37
10
0
10 Mar 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional
  Bayesian Optimization
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
29
4
0
16 Feb 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
49
0
0
26 Jan 2023
On the role of Model Uncertainties in Bayesian Optimization
On the role of Model Uncertainties in Bayesian Optimization
Jonathan Foldager
Mikkel Jordahn
Lars Kai Hansen
Michael Riis Andersen
32
5
0
14 Jan 2023
QoS-Aware Resource Management for Multi-phase Serverless Workflows with
  Aquatope
QoS-Aware Resource Management for Multi-phase Serverless Workflows with Aquatope
Zhuangzhuang Zhou
Yanqi Zhang
Christina Delimitrou
34
1
0
28 Dec 2022
Reconstructing Kernel-based Machine Learning Force Fields with
  Super-linear Convergence
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
31
4
0
24 Dec 2022
Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact
  Supervision
Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact Supervision
Wei Tang
Weijia Zhang
Min-Ling Zhang
19
12
0
18 Dec 2022
Mining Explainable Predictive Features for Water Quality Management
Mining Explainable Predictive Features for Water Quality Management
C. Muldoon
Levent Gorgu
J. O'Sullivan
W. Meijer
Gregory M. P. O'Hare
FAtt
21
0
0
08 Dec 2022
Deep Kernel Learning for Mortality Prediction in the Face of Temporal
  Shift
Deep Kernel Learning for Mortality Prediction in the Face of Temporal Shift
Miguel Rios
A. Abu-Hanna
OOD
30
1
0
01 Dec 2022
Gaussian Process Barrier States for Safe Trajectory Optimization and
  Control
Gaussian Process Barrier States for Safe Trajectory Optimization and Control
Hassan Almubarak
Manan S. Gandhi
Yuichiro Aoyama
N. Sadegh
Evangelos A. Theodorou
36
0
0
01 Dec 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
37
6
0
29 Nov 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
25
1
0
20 Nov 2022
Deep Gaussian Processes for Air Quality Inference
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
36
2
0
18 Nov 2022
ET-AL: Entropy-Targeted Active Learning for Bias Mitigation in Materials
  Data
ET-AL: Entropy-Targeted Active Learning for Bias Mitigation in Materials Data
Hengrui Zhang
Wei Chen
J. Rondinelli
Wei Chen
AI4CE
24
17
0
15 Nov 2022
Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian
  Optimization
Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian Optimization
Jose Pablo Folch
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
41
23
0
11 Nov 2022
Online Stochastic Variational Gaussian Process Mapping for Large-Scale
  SLAM in Real Time
Online Stochastic Variational Gaussian Process Mapping for Large-Scale SLAM in Real Time
Ignacio Torroba
M. Chella
Aldo Terán
Niklas Rolleberg
John Folkesson
22
1
0
10 Nov 2022
Optimizing Closed-Loop Performance with Data from Similar Systems: A
  Bayesian Meta-Learning Approach
Optimizing Closed-Loop Performance with Data from Similar Systems: A Bayesian Meta-Learning Approach
Ankush Chakrabarty
28
9
0
31 Oct 2022
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
P. Mikkola
Julien Martinelli
Louis Filstroff
Samuel Kaski
42
10
0
25 Oct 2022
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the
  Impact of Method & Data Scarcity
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the Impact of Method & Data Scarcity
Dennis Ulmer
J. Frellsen
Christian Hardmeier
200
22
0
20 Oct 2022
Streaming PAC-Bayes Gaussian process regression with a performance
  guarantee for online decision making
Streaming PAC-Bayes Gaussian process regression with a performance guarantee for online decision making
Tianyu Liu
Jie Lu
Zheng Yan
Guangquan Zhang
49
0
0
16 Oct 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
60
7
0
14 Oct 2022
Near-Optimal Multi-Agent Learning for Safe Coverage Control
Near-Optimal Multi-Agent Learning for Safe Coverage Control
Manish Prajapat
M. Turchetta
Melanie Zeilinger
Andreas Krause
35
14
0
12 Oct 2022
Efficient Gaussian Process Model on Class-Imbalanced Datasets for
  Generalized Zero-Shot Learning
Efficient Gaussian Process Model on Class-Imbalanced Datasets for Generalized Zero-Shot Learning
Changkun Ye
Nick Barnes
L. Petersson
Russell Tsuchida
BDL
SyDa
VLM
37
3
0
11 Oct 2022
Joint Entropy Search for Multi-objective Bayesian Optimization
Joint Entropy Search for Multi-objective Bayesian Optimization
Ben Tu
Axel Gandy
N. Kantas
B. Shafei
40
38
0
06 Oct 2022
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Willie Neiswanger
Lantao Yu
Shengjia Zhao
Chenlin Meng
Stefano Ermon
UQCV
50
11
0
04 Oct 2022
Backflipping with Miniature Quadcopters by Gaussian Process Based
  Control and Planning
Backflipping with Miniature Quadcopters by Gaussian Process Based Control and Planning
Péter Antal
Tamás Péni
R. Tóth
45
8
0
29 Sep 2022
Multipoint-BAX: A New Approach for Efficiently Tuning Particle
  Accelerator Emittance via Virtual Objectives
Multipoint-BAX: A New Approach for Efficiently Tuning Particle Accelerator Emittance via Virtual Objectives
Sara Ayoub Miskovich
Willie Neiswanger
W. Colocho
C. Emma
Jacqueline Garrahan
T. Maxwell
C. Mayes
Stefano Ermon
A. Edelen
Daniel Ratner
34
3
0
10 Sep 2022
Optimistic Optimization of Gaussian Process Samples
Optimistic Optimization of Gaussian Process Samples
Julia Grosse
Cheng Zhang
Philipp Hennig
GP
18
0
0
02 Sep 2022
Time-Optimal Handover Trajectory Planning for Aerial Manipulators based
  on Discrete Mechanics and Complementarity Constraints
Time-Optimal Handover Trajectory Planning for Aerial Manipulators based on Discrete Mechanics and Complementarity Constraints
Wei Luo
Jingmin Chen
Henrik Ebel
P. Eberhard
19
12
0
01 Sep 2022
Automatic Identification of Coal and Rock/Gangue Based on DenseNet and
  Gaussian Process
Automatic Identification of Coal and Rock/Gangue Based on DenseNet and Gaussian Process
Yu-Feng Li
38
1
0
31 Aug 2022
Constraining Gaussian Processes to Systems of Linear Ordinary
  Differential Equations
Constraining Gaussian Processes to Systems of Linear Ordinary Differential Equations
Andreas Besginow
Markus Lange-Hegermann
37
11
0
26 Aug 2022
NeuralUQ: A comprehensive library for uncertainty quantification in
  neural differential equations and operators
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
36
37
0
25 Aug 2022
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
23
0
0
24 Aug 2022
Event-Triggered Time-Varying Bayesian Optimization
Event-Triggered Time-Varying Bayesian Optimization
Paul Brunzema
Alexander von Rohr
Friedrich Solowjow
Sebastian Trimpe
21
7
0
23 Aug 2022
Gaussian Process Surrogate Models for Neural Networks
Gaussian Process Surrogate Models for Neural Networks
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
43
7
0
11 Aug 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
29
3
0
04 Aug 2022
Doubly Deformable Aggregation of Covariance Matrices for Few-shot
  Segmentation
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
Zhitong Xiong
Haopeng Li
Xiao Xiang Zhu
44
36
0
30 Jul 2022
On Controller Tuning with Time-Varying Bayesian Optimization
On Controller Tuning with Time-Varying Bayesian Optimization
Paul Brunzema
Alexander von Rohr
Sebastian Trimpe
34
17
0
22 Jul 2022
Previous
12345
Next