ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.11165
  4. Cited By
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration

GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration

28 September 2018
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
    GP
ArXivPDFHTML

Papers citing "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration"

50 / 207 papers shown
Title
Bayesian Optimization with High-Dimensional Outputs
Bayesian Optimization with High-Dimensional Outputs
Wesley J. Maddox
Maximilian Balandat
A. Wilson
E. Bakshy
UQCV
24
50
0
24 Jun 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by
  Adaptive Discretization
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
44
5
0
16 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
42
27
0
06 Jun 2021
Lookahead Acquisition Functions for Finite-Horizon Time-Dependent
  Bayesian Optimization and Application to Quantum Optimal Control
Lookahead Acquisition Functions for Finite-Horizon Time-Dependent Bayesian Optimization and Application to Quantum Optimal Control
Sudharshan Ashwin Renganathan
Jeffrey Larson
Stefan M. Wild
23
7
0
20 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
175
17
0
23 Apr 2021
Fast Design Space Exploration of Nonlinear Systems: Part I
Fast Design Space Exploration of Nonlinear Systems: Part I
S. Narain
Emily Mak
Dana Chee
Brendan Englot
K. Pochiraju
N. Jha
Karthik Narayan
25
5
0
05 Apr 2021
High-Dimensional Bayesian Optimization with Multi-Task Learning for
  RocksDB
High-Dimensional Bayesian Optimization with Multi-Task Learning for RocksDB
Sami Alabed
Eiko Yoneki
21
17
0
30 Mar 2021
The Hintons in your Neural Network: a Quantum Field Theory View of Deep
  Learning
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning
Roberto Bondesan
Max Welling
44
7
0
08 Mar 2021
Fast Adaptation with Linearized Neural Networks
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
32
32
0
02 Mar 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
26
19
0
12 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
47
16
0
15 Dec 2020
Forecasting Emergency Department Capacity Constraints for COVID
  Isolation Beds
Forecasting Emergency Department Capacity Constraints for COVID Isolation Beds
Erik Drysdale
Devin Singh
Anna Goldenberg
OOD
11
2
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
36
34
0
03 Nov 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
21
7
0
20 Oct 2020
Asynchronous ε-Greedy Bayesian Optimisation
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
35
5
0
15 Oct 2020
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic
  Models
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic Models
E. Zelikman
Sharon Zhou
Jeremy Irvin
Cooper D. Raterink
Hao Sheng
Anand Avati
Jack Kelly
Ram Rajagopal
A. Ng
D. Gagne
23
12
0
09 Oct 2020
Parametric Copula-GP model for analyzing multidimensional neuronal and
  behavioral relationships
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
N. Kudryashova
Theoklitos Amvrosiadis
Nathalie Dupuy
Nathalie L Rochefort
A. Onken
19
5
0
03 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
IntelligentPooling: Practical Thompson Sampling for mHealth
IntelligentPooling: Practical Thompson Sampling for mHealth
Sabina Tomkins
Peng Liao
P. Klasnja
Susan Murphy
39
30
0
31 Jul 2020
A Hierarchical Approach to Scaling Batch Active Search Over Structured
  Data
A Hierarchical Approach to Scaling Batch Active Search Over Structured Data
Vivek Myers
Peyton Greenside
36
1
0
20 Jul 2020
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Shali Jiang
Daniel R. Jiang
Maximilian Balandat
Brian Karrer
Jacob R. Gardner
Roman Garnett
21
44
0
29 Jun 2020
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of
  Gaussian Processes
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes
Mengdi Xu
Wenhao Ding
Jiacheng Zhu
Zuxin Liu
Baiming Chen
Ding Zhao
CLL
OffRL
30
34
0
19 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
21
43
0
19 Jun 2020
Bayesian Optimization with Missing Inputs
Bayesian Optimization with Missing Inputs
P. Luong
Dang Nguyen
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
29
3
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
33
114
0
18 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory
  Approach to Neural Network Training
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
42
49
0
16 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
46
100
0
15 Jun 2020
SAMBA: Safe Model-Based & Active Reinforcement Learning
SAMBA: Safe Model-Based & Active Reinforcement Learning
Alexander I. Cowen-Rivers
Daniel Palenicek
Vincent Moens
Mohammed Abdullah
Aivar Sootla
Jun Wang
Haitham Bou-Ammar
23
44
0
12 Jun 2020
Planning from Images with Deep Latent Gaussian Process Dynamics
Planning from Images with Deep Latent Gaussian Process Dynamics
Nathanael Bosch
Jan Achterhold
Laura Leal-Taixé
J. Stückler
25
1
0
07 May 2020
Multi-Sparse Gaussian Process: Learning based Semi-Parametric Control
Multi-Sparse Gaussian Process: Learning based Semi-Parametric Control
Mouhyemen Khan
Akash Patel
A. Chatterjee
4
2
0
03 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
38
277
0
24 Feb 2020
Rapidly Personalizing Mobile Health Treatment Policies with Limited Data
Rapidly Personalizing Mobile Health Treatment Policies with Limited Data
Sabina Tomkins
Peng Liao
P. Klasnja
Serena Yeung
Susan Murphy
44
6
0
23 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
642
0
20 Feb 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
Residual Correlation in Graph Neural Network Regression
Residual Correlation in Graph Neural Network Regression
Junteng Jia
Austin R. Benson
33
25
0
19 Feb 2020
MOGPTK: The Multi-Output Gaussian Process Toolkit
MOGPTK: The Multi-Output Gaussian Process Toolkit
T. Wolff
Alejandro Cuevas
Felipe A. Tobar
GP
22
45
0
09 Feb 2020
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
27
27
0
30 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
38
225
0
05 Dec 2019
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
112
3
0
15 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
51
452
0
03 Oct 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
143
0
17 Jul 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
29
3
0
31 May 2019
Kernel Conditional Density Operators
Kernel Conditional Density Operators
Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
30
25
0
27 May 2019
Constraining the Parameters of High-Dimensional Models with Active
  Learning
Constraining the Parameters of High-Dimensional Models with Active Learning
S. Caron
Tom Heskes
Sydney Otten
B. Stienen
AI4CE
22
27
0
19 May 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
24
226
0
19 Mar 2019
Previous
12345
Next