Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.11165
Cited By
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
28 September 2018
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration"
50 / 207 papers shown
Title
Bidirectional Information Flow (BIF) -- A Sample Efficient Hierarchical Gaussian Process for Bayesian Optimization
Juan D. Guerra
Thomas Garbay
Guillaume Lajoie
Marco Bonizzato
9
0
0
16 May 2025
Scalable Computations for Generalized Mixed Effects Models with Crossed Random Effects Using Krylov Subspace Methods
Pascal Kündig
Fabio Sigrist
29
0
0
14 May 2025
Finite-Sample-Based Reachability for Safe Control with Gaussian Process Dynamics
Manish Prajapat
Johannes Köhler
Amon Lahr
Andreas Krause
Melanie Zeilinger
38
0
0
12 May 2025
GPRat: Gaussian Process Regression with Asynchronous Tasks
Maksim Helmann
Alexander Strack
Dirk Pflüger
GP
43
0
0
30 Apr 2025
On learning functions over biological sequence space: relating Gaussian process priors, regularization, and gauge fixing
Samantha Petti
Carlos Martí-Gómez
Justin B. Kinney
Juannan Zhou
David M. McCandlish
GP
29
0
0
26 Apr 2025
The Power of the Pareto Front: Balancing Uncertain Rewards for Adaptive Experimentation in scanning probe microscopy
Yu Liu
Sergei V. Kalinin
38
0
0
09 Apr 2025
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
271
0
0
08 Apr 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
69
1
0
01 Apr 2025
Constrained multi-fidelity Bayesian optimization with automatic stop condition
Zahra Zanjani Foumani
Ramin Bostanabad
74
0
0
03 Mar 2025
Position: Curvature Matrices Should Be Democratized via Linear Operators
Felix Dangel
Runa Eschenhagen
Weronika Ormaniec
Andres Fernandez
Lukas Tatzel
Agustinus Kristiadi
69
3
0
31 Jan 2025
Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
Natalie Maus
Kyurae Kim
Yimeng Zeng
Haydn Thomas Jones
Fangping Wan
Marcelo Der Torossian Torres
Cesar de la Fuente-Nunez
Jacob R. Gardner
95
0
0
31 Jan 2025
Real-Time Generation of Near-Minimum-Energy Trajectories via Constraint-Informed Residual Learning
Domenico Dona'
Giovanni Franzese
Cosimo Della Santina
Paolo Boscariol
Basilio Lenzo
50
0
0
17 Jan 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
42
0
0
10 Jan 2025
Practical Performative Policy Learning with Strategic Agents
Qianyi Chen
Ying Chen
Bo Li
115
0
0
02 Dec 2024
Constrained composite Bayesian optimization for rational synthesis of polymeric particles
Fanjin Wang
Maryam Parhizkar
Anthony Harker
Mohan Edirisinghe
29
0
0
06 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
43
0
0
31 Oct 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
50
1
0
28 Oct 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
49
0
0
15 Oct 2024
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
31
2
0
11 Oct 2024
Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
Matthew Ashman
Cristiana-Diana Diaconu
Eric Langezaal
Adrian Weller
Richard E. Turner
AI4TS
41
1
0
09 Oct 2024
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
50
0
0
07 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
34
4
0
04 Oct 2024
Constraining Gaussian Process Implicit Surfaces for Robot Manipulation via Dataset Refinement
Abhinav Kumar
Peter Mitrano
Dmitry Berenson
37
0
0
30 Sep 2024
Autonomous Wheel Loader Navigation Using Goal-Conditioned Actor-Critic MPC
Aleksi Mäki-Penttilä
Naeim Ebrahimi Toulkani
Reza Ghabcheloo
39
0
0
24 Sep 2024
Conformal Prediction for Manifold-based Source Localization with Gaussian Processes
Vadim Rozenfeld
Bracha Laufer Goldshtein
40
0
0
18 Sep 2024
Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework
Manish Prajapat
Amon Lahr
Johannes Köhler
Andreas Krause
Melanie Zeilinger
37
2
0
13 Sep 2024
Bayesian Optimization for Non-Convex Two-Stage Stochastic Optimization Problems
Jack M. Buckingham
Ivo Couckuyt
Juergen Branke
46
0
0
30 Aug 2024
Batch Active Learning in Gaussian Process Regression using Derivatives
Hon Sum Alec Yu
Christoph Zimmer
D. Nguyen-Tuong
GP
31
1
0
03 Aug 2024
Smooth Path Planning Using a Gaussian Process Regression Map for Mobile Robot Navigation
Quentin Serdel
J. Marzat
Julien Moras
GP
23
1
0
08 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
82
0
0
01 Jul 2024
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
Zekai Wang
Tieming Liu
B. Yao
57
0
0
30 Jun 2024
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Peter Zaspel
Michael Günther
39
2
0
26 Jun 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
49
4
0
07 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
46
2
0
28 May 2024
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
40
0
0
27 May 2024
CMA-ES for Safe Optimization
Kento Uchida
Ryoki Hamano
Masahiro Nomura
Shota Saito
Shinichi Shirakawa
37
1
0
17 May 2024
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
47
0
0
17 May 2024
Kermut: Composite kernel regression for protein variant effects
Peter Mørch Groth
Mads Herbert Kerrn
Lars Olsen
Jesper Salomon
Wouter Boomsma
47
2
0
09 Apr 2024
Spatio-Temporal Attention and Gaussian Processes for Personalized Video Gaze Estimation
Swati Jindal
Mohit Yadav
Roberto Manduchi
37
5
0
08 Apr 2024
Learning Piecewise Residuals of Control Barrier Functions for Safety of Switching Systems using Multi-Output Gaussian Processes
Mohammad Aali
Jun Liu
37
0
0
26 Mar 2024
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Yunchuan Zhang
Sangwoo Park
Osvaldo Simeone
48
5
0
14 Mar 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
27
1
0
25 Feb 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
57
1
0
22 Feb 2024
Enhancing predictive capabilities in fusion burning plasmas through surrogate-based optimization in core transport solvers
P. Rodriguez-Fernandez
N. T. Howard
A. Saltzman
S. Kantamneni
J. Candy
C. Holland
M. Balandat
Sebastian Ament
A. E. White
20
10
0
19 Dec 2023
Towards Safe Multi-Task Bayesian Optimization
Jannis O. Lübsen
Christian Hespe
Annika Eichler
29
3
0
12 Dec 2023
Practical Path-based Bayesian Optimization
Jose Pablo Folch
J. Odgers
Shiqiang Zhang
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
49
2
0
01 Dec 2023
A systematic study comparing hyperparameter optimization engines on tabular data
Balazs Kegl
28
1
0
27 Nov 2023
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
32
10
0
01 Nov 2023
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
18
3
0
30 Oct 2023
Pseudo-Bayesian Optimization
Haoxian Chen
Henry Lam
34
2
0
15 Oct 2023
1
2
3
4
5
Next