Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07366
Cited By
Neural Ordinary Differential Equations
19 June 2018
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Ordinary Differential Equations"
50 / 1,087 papers shown
Title
Continuous Graph Neural Networks
Louis-Pascal Xhonneux
Meng Qu
Jian Tang
GNN
27
150
0
02 Dec 2019
Enabling real-time multi-messenger astrophysics discoveries with deep learning
Eliu A. Huerta
Gabrielle Allen
I. Andreoni
J. Antelis
E. Bachelet
...
Wei Wei
J. Wells
T. Williams
Jinjun Xiong
Zhizhen Zhao
AI4CE
25
71
0
26 Nov 2019
Graph Neural Ordinary Differential Equations
Michael Poli
Stefano Massaroli
Junyoung Park
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
51
154
0
18 Nov 2019
Shadowing Properties of Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
36
18
0
12 Nov 2019
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINN
AI4CE
28
213
0
09 Nov 2019
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
A. Yaguchi
Taiji Suzuki
Shuhei Nitta
Y. Sakata
A. Tanizawa
19
9
0
29 Oct 2019
Neural Similarity Learning
Weiyang Liu
Zhen Liu
James M. Rehg
Le Song
27
29
0
28 Oct 2019
FD-Net with Auxiliary Time Steps: Fast Prediction of PDEs using Hessian-Free Trust-Region Methods
Nur Sila Gulgec
Zheng Shi
Neil Deshmukh
S. Pakzad
Martin Takáč
23
6
0
28 Oct 2019
Towards Robust and Stable Deep Learning Algorithms for Forward Backward Stochastic Differential Equations
Batuhan Güler
Alexis Laignelet
P. Parpas
OOD
21
16
0
25 Oct 2019
Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands
H. Pinckaers
G. Litjens
SSeg
MedIm
22
36
0
23 Oct 2019
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
32
30
0
22 Oct 2019
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
Powering Hidden Markov Model by Neural Network based Generative Models
Dong Liu
Antoine Honoré
S. Chatterjee
L. Rasmussen
BDL
13
15
0
13 Oct 2019
On Robustness of Neural Ordinary Differential Equations
Hanshu Yan
Jiawei Du
Vincent Y. F. Tan
Jiashi Feng
OOD
24
138
0
12 Oct 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
43
2,035
0
08 Oct 2019
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
21
216
0
30 Sep 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
152
221
0
29 Sep 2019
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
31
177
0
27 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
54
269
0
26 Sep 2019
Mean-field Langevin System, Optimal Control and Deep Neural Networks
Kaitong Hu
A. Kazeykina
Zhenjie Ren
6
15
0
16 Sep 2019
Potential Flow Generator with
L
2
L_2
L
2
Optimal Transport Regularity for Generative Models
Liu Yang
George Karniadakis
OT
11
42
0
29 Aug 2019
Neural Dynamics on Complex Networks
Chengxi Zang
Fei Wang
AI4CE
35
68
0
18 Aug 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
Matrix Lie Maps and Neural Networks for Solving Differential Equations
A. Ivanov
S. Andrianov
24
3
0
16 Aug 2019
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
34
146
0
14 Aug 2019
Wasserstein Robust Reinforcement Learning
Mohammed Abdullah
Hang Ren
Haitham Bou-Ammar
Vladimir Milenkovic
Rui Luo
Mingtian Zhang
Jun Wang
32
75
0
30 Jul 2019
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
21
113
0
24 Jul 2019
Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning
Peter Y. Lu
Samuel Kim
Marin Soljacic
AI4CE
22
59
0
13 Jul 2019
Latent ODEs for Irregularly-Sampled Time Series
Yulia Rubanova
Ricky T. Q. Chen
David Duvenaud
BDL
AI4TS
31
252
0
08 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Jinwei Gu
Ming Liu
Serge J. Belongie
Bharath Hariharan
3DPC
40
660
0
28 Jun 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
B. Avelin
K. Nystrom
ODL
40
31
0
28 Jun 2019
Perceptual Generative Autoencoders
Zijun Zhang
Ruixiang Zhang
Zongpeng Li
Yoshua Bengio
Liam Paull
DRL
GAN
25
28
0
25 Jun 2019
Efficient and Effective Context-Based Convolutional Entropy Modeling for Image Compression
Mu Li
Kede Ma
J. You
David C. Zhang
W. Zuo
30
67
0
24 Jun 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
SNODE: Spectral Discretization of Neural ODEs for System Identification
A. Quaglino
Marco Gallieri
Jonathan Masci
Jan Koutník
AI4TS
21
48
0
17 Jun 2019
Normalizing flows for novelty detection in industrial time series data
Maximilian Schmidt
M. Šimic
DRL
AI4TS
AI4CE
27
25
0
17 Jun 2019
Tackling Climate Change with Machine Learning
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4Cl
AI4CE
38
788
0
10 Jun 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
41
748
0
10 Jun 2019
ANODEV2: A Coupled Neural ODE Evolution Framework
Tianjun Zhang
Z. Yao
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
George Biros
Michael W. Mahoney
22
41
0
10 Jun 2019
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
53
57
0
05 Jun 2019
Region-specific Diffeomorphic Metric Mapping
Zhengyang Shen
Franccois-Xavier Vialard
Marc Niethammer
16
47
0
01 Jun 2019
Greedy inference with structure-exploiting lazy maps
Michael C. Brennan
Daniele Bigoni
O. Zahm
Alessio Spantini
Youssef Marzouk
22
13
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
You Lu
Bert Huang
BDL
DRL
21
72
0
30 May 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
45
290
0
29 May 2019
Differentiable Algorithm Networks for Composable Robot Learning
Peter Karkus
Xiao Ma
David Hsu
L. Kaelbling
Wee Sun Lee
Tomas Lozano-Perez
22
70
0
28 May 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from Video
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGen
PINN
21
45
0
27 May 2019
Learning to Discretize: Solving 1D Scalar Conservation Laws via Deep Reinforcement Learning
Yufei Wang
Ziju Shen
Zichao Long
Bin Dong
AI4CE
PINN
13
40
0
27 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
16
31
0
27 May 2019
ODE
2
^2
2
VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDL
DRL
27
88
0
27 May 2019
Neural Jump Stochastic Differential Equations
Junteng Jia
Austin R. Benson
BDL
20
222
0
24 May 2019
Previous
1
2
3
...
20
21
22
Next