ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.12183
32
31

Neural ODEs as the Deep Limit of ResNets with constant weights

28 June 2019
B. Avelin
K. Nystrom
    ODL
ArXivPDFHTML
Abstract

In this paper we prove that, in the deep limit, the stochastic gradient descent on a ResNet type deep neural network, where each layer shares the same weight matrix, converges to the stochastic gradient descent for a Neural ODE and that the corresponding value/loss functions converge. Our result gives, in the context of minimization by stochastic gradient descent, a theoretical foundation for considering Neural ODEs as the deep limit of ResNets. Our proof is based on certain decay estimates for associated Fokker-Planck equations.

View on arXiv
Comments on this paper