ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06070
  4. Cited By
Diversity is All You Need: Learning Skills without a Reward Function

Diversity is All You Need: Learning Skills without a Reward Function

16 February 2018
Benjamin Eysenbach
Abhishek Gupta
Julian Ibarz
Sergey Levine
ArXivPDFHTML

Papers citing "Diversity is All You Need: Learning Skills without a Reward Function"

50 / 263 papers shown
Title
Affordance as general value function: A computational model
Affordance as general value function: A computational model
D. Graves
Johannes Günther
Jun Luo
AI4CE
21
6
0
27 Oct 2020
Behavior Priors for Efficient Reinforcement Learning
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
37
39
0
27 Oct 2020
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
  Learning
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement Learning
Anurag Ajay
Aviral Kumar
Pulkit Agrawal
Sergey Levine
Ofir Nachum
OffRL
OnRL
39
155
0
26 Oct 2020
Probabilistic Time Series Forecasting with Structured Shape and Temporal
  Diversity
Probabilistic Time Series Forecasting with Structured Shape and Temporal Diversity
Vincent Le Guen
Nicolas Thome
AI4TS
18
26
0
14 Oct 2020
SHERLock: Self-Supervised Hierarchical Event Representation Learning
SHERLock: Self-Supervised Hierarchical Event Representation Learning
Sumegh Roychowdhury
Sumedh Anand Sontakke
Nikaash Puri
Mausoom Sarkar
Milan Aggarwal
Pinkesh Badjatiya
Balaji Krishnamurthy
Laurent Itti
SSL
DRL
35
1
0
06 Oct 2020
Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems
Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems
Sandhya Saisubramanian
S. Zilberstein
Ece Kamar
20
21
0
24 Aug 2020
Towards General and Autonomous Learning of Core Skills: A Case Study in
  Locomotion
Towards General and Autonomous Learning of Core Skills: A Case Study in Locomotion
Roland Hafner
Tim Hertweck
Philipp Kloppner
Michael Bloesch
Michael Neunert
Markus Wulfmeier
S. Tunyasuvunakool
N. Heess
Martin Riedmiller
20
19
0
06 Aug 2020
Efficient Empowerment Estimation for Unsupervised Stabilization
Efficient Empowerment Estimation for Unsupervised Stabilization
Ruihan Zhao
Kevin Lu
Pieter Abbeel
Stas Tiomkin
32
8
0
14 Jul 2020
Long-Term Planning with Deep Reinforcement Learning on Autonomous Drones
Long-Term Planning with Deep Reinforcement Learning on Autonomous Drones
Ugurkan Ates
26
10
0
11 Jul 2020
Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State
  Entropy Estimate
Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State Entropy Estimate
Mirco Mutti
Lorenzo Pratissoli
Marcello Restelli
11
19
0
09 Jul 2020
Semantic Curiosity for Active Visual Learning
Semantic Curiosity for Active Visual Learning
Devendra Singh Chaplot
Helen Jiang
Saurabh Gupta
Abhinav Gupta
ObjD
16
72
0
16 Jun 2020
Non-local Policy Optimization via Diversity-regularized Collaborative
  Exploration
Non-local Policy Optimization via Diversity-regularized Collaborative Exploration
Zhenghao Peng
Hao Sun
Bolei Zhou
18
18
0
14 Jun 2020
The Emergence of Individuality
The Emergence of Individuality
Jiechuan Jiang
Zongqing Lu
26
34
0
10 Jun 2020
Skill Discovery of Coordination in Multi-agent Reinforcement Learning
Skill Discovery of Coordination in Multi-agent Reinforcement Learning
Shuncheng He
Jianzhun Shao
Xiangyang Ji
26
7
0
07 Jun 2020
Temporally-Extended ε-Greedy Exploration
Temporally-Extended ε-Greedy Exploration
Will Dabney
Georg Ostrovski
André Barreto
22
33
0
02 Jun 2020
Novel Policy Seeking with Constrained Optimization
Novel Policy Seeking with Constrained Optimization
Hao Sun
Zhenghao Peng
Bo Dai
Jian Guo
Dahua Lin
Bolei Zhou
24
13
0
21 May 2020
Planning to Explore via Self-Supervised World Models
Planning to Explore via Self-Supervised World Models
Ramanan Sekar
Oleh Rybkin
Kostas Daniilidis
Pieter Abbeel
Danijar Hafner
Deepak Pathak
SSL
33
399
0
12 May 2020
Maximizing Information Gain in Partially Observable Environments via
  Prediction Reward
Maximizing Information Gain in Partially Observable Environments via Prediction Reward
Yash Satsangi
Sungsu Lim
Shimon Whiteson
F. Oliehoek
Martha White
27
15
0
11 May 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
29
510
0
30 Mar 2020
Monotonic Value Function Factorisation for Deep Multi-Agent
  Reinforcement Learning
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
67
773
0
19 Mar 2020
Automatic Curriculum Learning For Deep RL: A Short Survey
Automatic Curriculum Learning For Deep RL: A Short Survey
Rémy Portelas
Cédric Colas
Lilian Weng
Katja Hofmann
Pierre-Yves Oudeyer
ODL
24
169
0
10 Mar 2020
Hierarchically Decoupled Imitation for Morphological Transfer
Hierarchically Decoupled Imitation for Morphological Transfer
D. Hejna
Pieter Abbeel
Lerrel Pinto
LM&Ro
25
41
0
03 Mar 2020
Effective Diversity in Population Based Reinforcement Learning
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
22
158
0
03 Feb 2020
Making Sense of Reinforcement Learning and Probabilistic Inference
Making Sense of Reinforcement Learning and Probabilistic Inference
Brendan O'Donoghue
Ian Osband
Catalin Ionescu
OffRL
27
48
0
03 Jan 2020
Joint Goal and Strategy Inference across Heterogeneous Demonstrators via
  Reward Network Distillation
Joint Goal and Strategy Inference across Heterogeneous Demonstrators via Reward Network Distillation
Letian Chen
Rohan R. Paleja
Muyleng Ghuy
Matthew C. Gombolay
27
38
0
02 Jan 2020
How Should an Agent Practice?
How Should an Agent Practice?
Janarthanan Rajendran
Richard L. Lewis
Vivek Veeriah
Honglak Lee
Satinder Singh
26
9
0
15 Dec 2019
Implicit Generative Modeling for Efficient Exploration
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
27
12
0
19 Nov 2019
Unsupervised Reinforcement Learning of Transferable Meta-Skills for
  Embodied Navigation
Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation
Juncheng Li
Junfeng Fang
Siliang Tang
Haizhou Shi
Fei Wu
Yueting Zhuang
William Yang Wang
SSL
46
68
0
18 Nov 2019
MAVEN: Multi-Agent Variational Exploration
MAVEN: Multi-Agent Variational Exploration
Anuj Mahajan
Tabish Rashid
Mikayel Samvelyan
Shimon Whiteson
DRL
148
355
0
16 Oct 2019
Hierarchical Reinforcement Learning with Advantage-Based Auxiliary
  Rewards
Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards
Siyuan Li
Rui Wang
Minxue Tang
Chongjie Zhang
18
82
0
10 Oct 2019
Unsupervised Learning and Exploration of Reachable Outcome Space
Unsupervised Learning and Exploration of Reachable Outcome Space
Giuseppe Paolo
Alban Laflaquière
Alexandre Coninx
Stéphane Doncieux
32
36
0
12 Sep 2019
Discovery of Useful Questions as Auxiliary Tasks
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah
Matteo Hessel
Zhongwen Xu
Richard L. Lewis
Janarthanan Rajendran
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
LLMAG
22
86
0
10 Sep 2019
Dynamical Distance Learning for Semi-Supervised and Unsupervised Skill
  Discovery
Dynamical Distance Learning for Semi-Supervised and Unsupervised Skill Discovery
Kristian Hartikainen
Xinyang Geng
Tuomas Haarnoja
Sergey Levine
SSL
40
74
0
18 Jul 2019
On the Weaknesses of Reinforcement Learning for Neural Machine
  Translation
On the Weaknesses of Reinforcement Learning for Neural Machine Translation
Leshem Choshen
Lior Fox
Zohar Aizenbud
Omri Abend
26
104
0
03 Jul 2019
Reinforcement Learning with Competitive Ensembles of
  Information-Constrained Primitives
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives
Anirudh Goyal
Shagun Sodhani
Jonathan Binas
Xue Bin Peng
Sergey Levine
Yoshua Bengio
24
47
0
25 Jun 2019
Learning-Driven Exploration for Reinforcement Learning
Learning-Driven Exploration for Reinforcement Learning
Muhammad Usama
D. Chang
29
10
0
17 Jun 2019
Sub-policy Adaptation for Hierarchical Reinforcement Learning
Sub-policy Adaptation for Hierarchical Reinforcement Learning
Alexander C. Li
Carlos Florensa
I. Clavera
Pieter Abbeel
29
71
0
13 Jun 2019
Fast Task Inference with Variational Intrinsic Successor Features
Fast Task Inference with Variational Intrinsic Successor Features
Steven Hansen
Will Dabney
André Barreto
T. Wiele
David Warde-Farley
Volodymyr Mnih
BDL
44
151
0
12 Jun 2019
Self-Supervised Exploration via Disagreement
Self-Supervised Exploration via Disagreement
Deepak Pathak
Dhiraj Gandhi
Abhinav Gupta
SSL
35
375
0
10 Jun 2019
Adversarial Imitation Learning from Incomplete Demonstrations
Adversarial Imitation Learning from Incomplete Demonstrations
Mingfei Sun
Xiaojuan Ma
18
28
0
29 May 2019
AI-GAs: AI-generating algorithms, an alternate paradigm for producing
  general artificial intelligence
AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence
Jeff Clune
17
116
0
27 May 2019
MCP: Learning Composable Hierarchical Control with Multiplicative
  Compositional Policies
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies
Xue Bin Peng
Michael Chang
Grace Zhang
Pieter Abbeel
Sergey Levine
18
192
0
23 May 2019
COBRA: Data-Efficient Model-Based RL through Unsupervised Object
  Discovery and Curiosity-Driven Exploration
COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration
Nicholas Watters
Loic Matthey
Matko Bosnjak
Christopher P. Burgess
Alexander Lerchner
OffRL
11
117
0
22 May 2019
Routing Networks and the Challenges of Modular and Compositional
  Computation
Routing Networks and the Challenges of Modular and Compositional Computation
Clemens Rosenbaum
Ignacio Cases
Matthew D Riemer
Tim Klinger
40
78
0
29 Apr 2019
Active Domain Randomization
Active Domain Randomization
Bhairav Mehta
Manfred Diaz
Florian Golemo
C. Pal
Liam Paull
30
257
0
09 Apr 2019
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Vitchyr H. Pong
Murtaza Dalal
Steven Lin
Ashvin Nair
Shikhar Bahl
Sergey Levine
OffRL
SSL
36
269
0
08 Mar 2019
Discovering Options for Exploration by Minimizing Cover Time
Discovering Options for Exploration by Minimizing Cover Time
Yuu Jinnai
Jee Won Park
David Abel
George Konidaris
27
52
0
02 Mar 2019
The Termination Critic
The Termination Critic
Anna Harutyunyan
Will Dabney
Diana Borsa
N. Heess
Rémi Munos
Doina Precup
OffRL
24
48
0
26 Feb 2019
Tsallis Reinforcement Learning: A Unified Framework for Maximum Entropy
  Reinforcement Learning
Tsallis Reinforcement Learning: A Unified Framework for Maximum Entropy Reinforcement Learning
Kyungjae Lee
Sungyub Kim
Sungbin Lim
Sungjoon Choi
Songhwai Oh
19
28
0
31 Jan 2019
CLIC: Curriculum Learning and Imitation for object Control in
  non-rewarding environments
CLIC: Curriculum Learning and Imitation for object Control in non-rewarding environments
Pierre Fournier
Olivier Sigaud
Cédric Colas
Mohamed Chetouani
OffRL
37
26
0
28 Jan 2019
Previous
123456
Next