ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05983
  4. Cited By
Disentangling by Factorising
v1v2v3 (latest)

Disentangling by Factorising

16 February 2018
Hyunjik Kim
A. Mnih
    CoGeOOD
ArXiv (abs)PDFHTML

Papers citing "Disentangling by Factorising"

50 / 790 papers shown
Title
Disentangling Representations of Text by Masking Transformers
Disentangling Representations of Text by Masking Transformers
Xiongyi Zhang
Jan-Willem van de Meent
Byron C. Wallace
DRL
64
21
0
14 Apr 2021
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAttDRL
100
39
0
07 Apr 2021
Learning Neural Representation of Camera Pose with Matrix Representation
  of Pose Shift via View Synthesis
Learning Neural Representation of Camera Pose with Matrix Representation of Pose Shift via View Synthesis
Y. Zhu
Ruiqi Gao
Siyuan Huang
Song-Chun Zhu
Ying Nian Wu
SSL
113
10
0
04 Apr 2021
Unsupervised Disentanglement of Linear-Encoded Facial Semantics
Unsupervised Disentanglement of Linear-Encoded Facial Semantics
Yutong Zheng
Yu-Kai Huang
R. Tao
Zhiqiang Shen
Marios Savvides
CVBMDRL
59
12
0
30 Mar 2021
Evaluation of Correctness in Unsupervised Many-to-Many Image Translation
Evaluation of Correctness in Unsupervised Many-to-Many Image Translation
D. Bashkirova
Ben Usman
Kate Saenko
60
4
0
29 Mar 2021
Explaining Representation by Mutual Information
Explaining Representation by Mutual Information
Li Gu
SSLFAtt
81
0
0
28 Mar 2021
Decomposing Normal and Abnormal Features of Medical Images into Discrete
  Latent Codes for Content-Based Image Retrieval
Decomposing Normal and Abnormal Features of Medical Images into Discrete Latent Codes for Content-Based Image Retrieval
Kazuma Kobayashi
Ryuichiro Hataya
Y. Kurose
M. Miyake
Masamichi Takahashi
Akiko Nakagawa
Tatsuya Harada
Ryuji Hamamoto
MedIm
93
19
0
23 Mar 2021
Raven's Progressive Matrices Completion with Latent Gaussian Process
  Priors
Raven's Progressive Matrices Completion with Latent Gaussian Process Priors
Fan Shi
Bin Li
Xiangyang Xue
LRM
70
9
0
22 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaMLAI4CELRM
245
677
0
20 Mar 2021
GLOWin: A Flow-based Invertible Generative Framework for Learning
  Disentangled Feature Representations in Medical Images
GLOWin: A Flow-based Invertible Generative Framework for Learning Disentangled Feature Representations in Medical Images
Aadhithya Sankar
Matthias Keicher
R. Eisawy
Abhijeet Parida
Franz MJ Pfister
Seong Tae Kim
Nassir Navab
OODDRLMedIm
74
8
0
19 Mar 2021
Improving Zero-shot Voice Style Transfer via Disentangled Representation
  Learning
Improving Zero-shot Voice Style Transfer via Disentangled Representation Learning
Siyang Yuan
Pengyu Cheng
Ruiyi Zhang
Weituo Hao
Zhe Gan
Lawrence Carin
DRL
66
61
0
17 Mar 2021
Spatial Dependency Networks: Neural Layers for Improved Generative Image
  Modeling
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling
DJordje Miladinović
Aleksandar Stanić
Stefan Bauer
Jürgen Schmidhuber
J. M. Buhmann
DRL
76
9
0
16 Mar 2021
CoDeGAN: Contrastive Disentanglement for Generative Adversarial Network
CoDeGAN: Contrastive Disentanglement for Generative Adversarial Network
Lili Pan
Peijun Tang
Zhiyong Chen
Zenglin Xu
GANDRL
64
5
0
05 Mar 2021
Learning disentangled representations via product manifold projection
Learning disentangled representations via product manifold projection
Marco Fumero
Luca Cosmo
Simone Melzi
Emanuele Rodolà
CoGeDRL
85
23
0
02 Mar 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OODCMLAI4CE
160
322
0
22 Feb 2021
Rethinking Content and Style: Exploring Bias for Unsupervised
  Disentanglement
Rethinking Content and Style: Exploring Bias for Unsupervised Disentanglement
Xuanchi Ren
Tao Yang
Yuwang Wang
Wenjun Zeng
CoGeDRL
77
8
0
21 Feb 2021
Learning Disentangled Representation by Exploiting Pretrained Generative
  Models: A Contrastive Learning View
Learning Disentangled Representation by Exploiting Pretrained Generative Models: A Contrastive Learning View
Xuanchi Ren
Tao Yang
Yuwang Wang
W. Zeng
CoGeOCLDRL
105
40
0
21 Feb 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGeDRL
75
30
0
20 Feb 2021
Demystifying Inductive Biases for $β$-VAE Based Architectures
Demystifying Inductive Biases for βββ-VAE Based Architectures
Dominik Zietlow
Michal Rolínek
Georg Martius
CoGeDRLCML
36
8
0
12 Feb 2021
Disentangled Representations from Non-Disentangled Models
Disentangled Representations from Non-Disentangled Models
Valentin Khrulkov
L. Mirvakhabova
Ivan Oseledets
Artem Babenko
OCLDRLCoGe
59
15
0
11 Feb 2021
On Disentanglement in Gaussian Process Variational Autoencoders
On Disentanglement in Gaussian Process Variational Autoencoders
Simon Bing
Vincent Fortuin
Gunnar Rätsch
CMLCoGeBDLDRL
81
9
0
10 Feb 2021
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
A. Ross
Finale Doshi-Velez
DRL
84
13
0
09 Feb 2021
DEFT: Distilling Entangled Factors by Preventing Information Diffusion
DEFT: Distilling Entangled Factors by Preventing Information Diffusion
Jiantao Wu
Lin Wang
Bo Yang
Fanqi Li
Chunxiuzi Liu
Jin Zhou
44
2
0
08 Feb 2021
Achieving Explainability for Plant Disease Classification with
  Disentangled Variational Autoencoders
Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders
Harshana Habaragamuwa
Y. Oishi
Kenichi Tanaka
98
9
0
05 Feb 2021
The Pitfall of More Powerful Autoencoders in Lidar-Based Navigation
The Pitfall of More Powerful Autoencoders in Lidar-Based Navigation
Christoph Gebauer
Maren Bennewitz
SSL3DV3DPC
38
0
0
03 Feb 2021
Evaluating the Interpretability of Generative Models by Interactive
  Reconstruction
Evaluating the Interpretability of Generative Models by Interactive Reconstruction
A. Ross
Nina Chen
Elisa Zhao Hang
Elena L. Glassman
Finale Doshi-Velez
158
49
0
02 Feb 2021
Semi-Supervised Disentanglement of Class-Related and Class-Independent
  Factors in VAE
Semi-Supervised Disentanglement of Class-Related and Class-Independent Factors in VAE
Sina Hajimiri
Aryo Lotfi
M. Baghshah
DRL
39
9
0
01 Feb 2021
Video Reenactment as Inductive Bias for Content-Motion Disentanglement
Video Reenactment as Inductive Bias for Content-Motion Disentanglement
Juan Felipe Hernandez Albarracin
Adín Ramirez Rivera
92
2
0
30 Jan 2021
Image-to-Image Translation: Methods and Applications
Image-to-Image Translation: Methods and Applications
Yingxue Pang
Jianxin Lin
Tao Qin
Zhibo Chen
VLM
111
267
0
21 Jan 2021
Blocked and Hierarchical Disentangled Representation From Information
  Theory Perspective
Blocked and Hierarchical Disentangled Representation From Information Theory Perspective
Ziwen Liu
Mingqiang Li
Congying Han
DRL
20
1
0
21 Jan 2021
Semantics Disentangling for Generalized Zero-Shot Learning
Semantics Disentangling for Generalized Zero-Shot Learning
Zhi Chen
Yadan Luo
Ruihong Qiu
Sen Wang
Zi Huang
Jingjing Li
Zheng Zhang
151
101
0
20 Jan 2021
Disentangled Recurrent Wasserstein Autoencoder
Disentangled Recurrent Wasserstein Autoencoder
Jun Han
Martin Renqiang Min
Ligong Han
Erran L. Li
Xuan Zhang
CoGeSyDaDRL
81
33
0
19 Jan 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
  Estimation
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
85
52
0
14 Jan 2021
Evaluating Disentanglement of Structured Representations
Evaluating Disentanglement of Structured Representations
Raphaël Dang-Nhu
OCL
154
5
0
11 Jan 2021
HAVANA: Hierarchical and Variation-Normalized Autoencoder for Person
  Re-identification
HAVANA: Hierarchical and Variation-Normalized Autoencoder for Person Re-identification
Jiawei Ren
Xiao Ma
Chen Xu
Haiyu Zhao
Shuai Yi
BDL
56
4
0
06 Jan 2021
Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent
  Representations
Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent Representations
Mihee Lee
Vladimir Pavlovic
DRL
39
13
0
23 Dec 2020
Semi-Supervised Disentangled Framework for Transferable Named Entity
  Recognition
Semi-Supervised Disentangled Framework for Transferable Named Entity Recognition
Zijian Li
Di Lv
Zijian Li
Ruichu Cai
Wen Wen
Boyan Xu
49
12
0
22 Dec 2020
ReferentialGym: A Nomenclature and Framework for Language Emergence &
  Grounding in (Visual) Referential Games
ReferentialGym: A Nomenclature and Framework for Language Emergence & Grounding in (Visual) Referential Games
Kevin Denamganai
James Alfred Walker
53
7
0
17 Dec 2020
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGeDRL
89
85
0
16 Dec 2020
Multi-type Disentanglement without Adversarial Training
Multi-type Disentanglement without Adversarial Training
Lei Sha
Thomas Lukasiewicz
DRL
119
12
0
16 Dec 2020
Odd-One-Out Representation Learning
Odd-One-Out Representation Learning
Salman Mohammadi
Anders Kirk Uhrenholt
B. S. Jensen
SSLOODDRL
13
2
0
14 Dec 2020
Disentangled Information Bottleneck
Disentangled Information Bottleneck
Ziqi Pan
Li Niu
Jianfu Zhang
Liqing Zhang
73
37
0
14 Dec 2020
Disentangling images with Lie group transformations and sparse coding
Disentangling images with Lie group transformations and sparse coding
Ho Yin Chau
Frank Qiu
Yubei Chen
Bruno A. Olshausen
57
13
0
11 Dec 2020
Variational Interaction Information Maximization for Cross-domain
  Disentanglement
Variational Interaction Information Maximization for Cross-domain Disentanglement
HyeongJoo Hwang
Geon-hyeong Kim
Seunghoon Hong
Kee-Eung Kim
BDLDRL
57
50
0
08 Dec 2020
Understanding Failures of Deep Networks via Robust Feature Extraction
Understanding Failures of Deep Networks via Robust Feature Extraction
Sahil Singla
Besmira Nushi
S. Shah
Ece Kamar
Eric Horvitz
FAtt
89
84
0
03 Dec 2020
Learning Disentangled Latent Factors from Paired Data in Cross-Modal
  Retrieval: An Implicit Identifiable VAE Approach
Learning Disentangled Latent Factors from Paired Data in Cross-Modal Retrieval: An Implicit Identifiable VAE Approach
Minyoung Kim
Ricardo Guerrero
Vladimir Pavlovic
CoGeCML
24
1
0
01 Dec 2020
Unpaired Image-to-Image Translation via Latent Energy Transport
Unpaired Image-to-Image Translation via Latent Energy Transport
Yang Zhao
Changyou Chen
80
28
0
01 Dec 2020
Inductive Biases for Deep Learning of Higher-Level Cognition
Inductive Biases for Deep Learning of Higher-Level Cognition
Anirudh Goyal
Yoshua Bengio
AI4CE
118
366
0
30 Nov 2020
Unsupervised learning of disentangled representations in deep restricted
  kernel machines with orthogonality constraints
Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints
F. Tonin
Panagiotis Patrinos
Johan A. K. Suykens
DRLOOD
47
16
0
25 Nov 2020
Counterfactual Fairness with Disentangled Causal Effect Variational
  Autoencoder
Counterfactual Fairness with Disentangled Causal Effect Variational Autoencoder
Hyemi Kim
Seungjae Shin
Joonho Jang
Kyungwoo Song
Weonyoung Joo
Wanmo Kang
Il-Chul Moon
BDLCML
87
57
0
24 Nov 2020
Previous
123...91011...141516
Next