ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05983
  4. Cited By
Disentangling by Factorising
v1v2v3 (latest)

Disentangling by Factorising

16 February 2018
Hyunjik Kim
A. Mnih
    CoGeOOD
ArXiv (abs)PDFHTML

Papers citing "Disentangling by Factorising"

50 / 790 papers shown
Title
Born Identity Network: Multi-way Counterfactual Map Generation to
  Explain a Classifier's Decision
Born Identity Network: Multi-way Counterfactual Map Generation to Explain a Classifier's Decision
Kwanseok Oh
Jee Seok Yoon
Heung-Il Suk
46
4
0
20 Nov 2020
Dual Contradistinctive Generative Autoencoder
Dual Contradistinctive Generative Autoencoder
Gaurav Parmar
Dacheng Li
Kwonjoon Lee
Zhuowen Tu
GAN
67
82
0
19 Nov 2020
Reducing the Variance of Variational Estimates of Mutual Information by
  Limiting the Critic's Hypothesis Space to RKHS
Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS
P. A. Sreekar
Ujjwal Tiwari
A. Namboodiri
39
2
0
17 Nov 2020
Mutual Information Based Method for Unsupervised Disentanglement of
  Video Representation
Mutual Information Based Method for Unsupervised Disentanglement of Video Representation
Aditya Sreekar
Ujjwal Tiwari
A. Namboodiri
DRL
116
4
0
17 Nov 2020
On the Transferability of VAE Embeddings using Relational Knowledge with
  Semi-Supervision
On the Transferability of VAE Embeddings using Relational Knowledge with Semi-Supervision
Harald Stromfelt
Luke Dickens
Artur Garcez
A. Russo
DRL
44
2
0
13 Nov 2020
Quantifying and Learning Linear Symmetry-Based Disentanglement
Quantifying and Learning Linear Symmetry-Based Disentanglement
Loek Tonnaer
L. Rey
Vlado Menkovski
Mike Holenderski
J. Portegies
FedMLCoGeDRL
70
14
0
11 Nov 2020
Text Classification through Glyph-aware Disentangled Character Embedding
  and Semantic Sub-character Augmentation
Text Classification through Glyph-aware Disentangled Character Embedding and Semantic Sub-character Augmentation
Takumi Aoki
Shunsuke Kitada
Hitoshi Iyatomi
55
2
0
09 Nov 2020
Paralinguistic Privacy Protection at the Edge
Paralinguistic Privacy Protection at the Edge
Ranya Aloufi
Hamed Haddadi
David E. Boyle
60
14
0
04 Nov 2020
ControlVAE: Tuning, Analytical Properties, and Performance Analysis
ControlVAE: Tuning, Analytical Properties, and Performance Analysis
Huajie Shao
Zhisheng Xiao
Shuochao Yao
Aston Zhang
Shengzhong Liu
Tarek Abdelzaher
DRL
99
16
0
31 Oct 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
135
82
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
82
70
0
27 Oct 2020
Robust Disentanglement of a Few Factors at a Time
Robust Disentanglement of a Few Factors at a Time
Benjamin Estermann
Markus Marks
M. Yanik
CoGeOODDRL
88
3
0
26 Oct 2020
Generative Neurosymbolic Machines
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDLOCL
303
69
0
23 Oct 2020
Product Manifold Learning
Product Manifold Learning
Sharon Zhang
Amit Moscovich
A. Singer
85
14
0
19 Oct 2020
An Identifiable Double VAE For Disentangled Representations
An Identifiable Double VAE For Disentangled Representations
Graziano Mita
Maurizio Filippone
Pietro Michiardi
CoGeDRL
68
0
0
19 Oct 2020
Disentangling Action Sequences: Discovering Correlated Samples
Disentangling Action Sequences: Discovering Correlated Samples
Jiantao Wu
Lin Wang
CMLCoGeDRL
13
0
0
17 Oct 2020
Towards Accurate Knowledge Transfer via Target-awareness Representation
  Disentanglement
Towards Accurate Knowledge Transfer via Target-awareness Representation Disentanglement
Xingjian Li
Di Hu
Xuhong Li
Haoyi Xiong
Zhiquan Ye
Zhipeng Wang
Chengzhong Xu
Dejing Dou
AAML
38
1
0
16 Oct 2020
THIN: THrowable Information Networks and Application for Facial
  Expression Recognition In The Wild
THIN: THrowable Information Networks and Application for Facial Expression Recognition In The Wild
Estèphe Arnaud
Arnaud Dapogny
Kévin Bailly
CVBM
69
26
0
15 Oct 2020
Human-interpretable model explainability on high-dimensional data
Human-interpretable model explainability on high-dimensional data
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
FAtt
52
10
0
14 Oct 2020
Factorizable Graph Convolutional Networks
Factorizable Graph Convolutional Networks
Yiding Yang
Zunlei Feng
Xiuming Zhang
Xinchao Wang
GNN
96
147
0
12 Oct 2020
Learning disentangled representations with the Wasserstein Autoencoder
Learning disentangled representations with the Wasserstein Autoencoder
Benoit Gaujac
Ilya Feige
David Barber
OODCoGeDRL
38
6
0
07 Oct 2020
Causal Curiosity: RL Agents Discovering Self-supervised Experiments for
  Causal Representation Learning
Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning
Sumedh Anand Sontakke
Arash Mehrjou
Laurent Itti
Bernhard Schölkopf
CML
101
63
0
07 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
84
4
0
05 Oct 2020
RG-Flow: A hierarchical and explainable flow model based on
  renormalization group and sparse prior
RG-Flow: A hierarchical and explainable flow model based on renormalization group and sparse prior
Hong-Ye Hu
Dian Wu
Yi-Zhuang You
Bruno A. Olshausen
Yubei Chen
BDLDRL
89
16
0
30 Sep 2020
Geometric Disentanglement by Random Convex Polytopes
Geometric Disentanglement by Random Convex Polytopes
M. Joswig
M. Kaluba
Lukas Ruff
65
3
0
29 Sep 2020
A Comprehensive Survey of Machine Learning Applied to Radar Signal
  Processing
A Comprehensive Survey of Machine Learning Applied to Radar Signal Processing
Ping Lang
Xiongjun Fu
M. Martorella
Jian Dong
Rui Qin
Xianpeng Meng
M. Xie
41
42
0
29 Sep 2020
Improving Robustness and Generality of NLP Models Using Disentangled
  Representations
Improving Robustness and Generality of NLP Models Using Disentangled Representations
Jiawei Wu
Xiaoya Li
Xiang Ao
Yuxian Meng
Leilei Gan
Jiwei Li
OODDRL
36
11
0
21 Sep 2020
Factorized Deep Generative Models for Trajectory Generation with
  Spatiotemporal-Validity Constraints
Factorized Deep Generative Models for Trajectory Generation with Spatiotemporal-Validity Constraints
Liming Zhang
Liang Zhao
Dieter Pfoser
55
3
0
20 Sep 2020
Discond-VAE: Disentangling Continuous Factors from the Discrete
Discond-VAE: Disentangling Continuous Factors from the Discrete
Jaewoong Choi
Geonho Hwang
Myung-joo Kang
CoGeCML
54
4
0
17 Sep 2020
Domain-invariant Similarity Activation Map Contrastive Learning for
  Retrieval-based Long-term Visual Localization
Domain-invariant Similarity Activation Map Contrastive Learning for Retrieval-based Long-term Visual Localization
Hanjiang Hu
Hesheng Wang
Zhe Liu
Weidong Chen
59
27
0
16 Sep 2020
DynamicVAE: Decoupling Reconstruction Error and Disentangled
  Representation Learning
DynamicVAE: Decoupling Reconstruction Error and Disentangled Representation Learning
Huajie Shao
Haohong Lin
Qinmin Yang
Shuochao Yao
Han Zhao
Tarek Abdelzaher
DRL
51
0
0
15 Sep 2020
Zero-shot Synthesis with Group-Supervised Learning
Zero-shot Synthesis with Group-Supervised Learning
Yunhao Ge
Sami Abu-El-Haija
Gan Xin
Laurent Itti
69
37
0
14 Sep 2020
Synbols: Probing Learning Algorithms with Synthetic Datasets
Synbols: Probing Learning Algorithms with Synthetic Datasets
Alexandre Lacoste
Pau Rodríguez
Frederic Branchaud-Charron
Parmida Atighehchian
Massimo Caccia
I. Laradji
Alexandre Drouin
Matt Craddock
Laurent Charlin
David Vázquez
81
14
0
14 Sep 2020
Revisiting Factorizing Aggregated Posterior in Learning Disentangled
  Representations
Revisiting Factorizing Aggregated Posterior in Learning Disentangled Representations
Ze Cheng
Juncheng Li
Chenxu Wang
Jixuan Gu
Hao Xu
Xinjian Li
Florian Metze
OOD
32
2
0
12 Sep 2020
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
Maja Pantic
Yannis Panagakis
GANDRL
68
17
0
09 Sep 2020
Ordinal-Content VAE: Isolating Ordinal-Valued Content Factors in Deep
  Latent Variable Models
Ordinal-Content VAE: Isolating Ordinal-Valued Content Factors in Deep Latent Variable Models
Minyoung Kim
Vladimir Pavlovic
CMLDRL
48
4
0
07 Sep 2020
LaDDer: Latent Data Distribution Modelling with a Generative Prior
LaDDer: Latent Data Distribution Modelling with a Generative Prior
Shuyu Lin
R. Clark
DRL
100
4
0
31 Aug 2020
Decontextualized learning for interpretable hierarchical representations
  of visual patterns
Decontextualized learning for interpretable hierarchical representations of visual patterns
R. I. Etheredge
M. Schartl
Alex Jordan
44
4
0
31 Aug 2020
Learning to Balance Specificity and Invariance for In and Out of Domain
  Generalization
Learning to Balance Specificity and Invariance for In and Out of Domain Generalization
Prithvijit Chattopadhyay
Yogesh Balaji
Judy Hoffman
OOD
95
208
0
28 Aug 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGeDRL
103
18
0
27 Aug 2020
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Ajitabh Kumar
35
0
0
26 Aug 2020
The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement
The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement
William S. Peebles
John Peebles
Jun-Yan Zhu
Alexei A. Efros
Antonio Torralba
79
115
0
24 Aug 2020
WeLa-VAE: Learning Alternative Disentangled Representations Using Weak
  Labels
WeLa-VAE: Learning Alternative Disentangled Representations Using Weak Labels
Vasilis Margonis
Athanasios Davvetas
I. Klampanos
CoGeDRLCML
40
3
0
22 Aug 2020
iCaps: An Interpretable Classifier via Disentangled Capsule Networks
iCaps: An Interpretable Classifier via Disentangled Capsule Networks
Dahuin Jung
Jonghyun Lee
Jihun Yi
Sungroh Yoon
136
12
0
20 Aug 2020
Linear Disentangled Representations and Unsupervised Action Estimation
Linear Disentangled Representations and Unsupervised Action Estimation
Matthew Painter
Jonathon S. Hare
Adam Prugel-Bennett
CoGeDRL
70
20
0
18 Aug 2020
Learning Interpretable Representation for Controllable Polyphonic Music
  Generation
Learning Interpretable Representation for Controllable Polyphonic Music Generation
Ziyu Wang
Dingsu Wang
Yixiao Zhang
Gus Xia
DRL
53
64
0
17 Aug 2020
Unifying supervised learning and VAEs -- coverage, systematics and
  goodness-of-fit in normalizing-flow based neural network models for
  astro-particle reconstructions
Unifying supervised learning and VAEs -- coverage, systematics and goodness-of-fit in normalizing-flow based neural network models for astro-particle reconstructions
T. Glüsenkamp
39
1
0
13 Aug 2020
Null-sampling for Interpretable and Fair Representations
Null-sampling for Interpretable and Fair Representations
T. Kehrenberg
Myles Bartlett
Oliver Thomas
Novi Quadrianto
OOD
41
29
0
12 Aug 2020
Intervention Generative Adversarial Networks
Intervention Generative Adversarial Networks
Jiadong Liang
Liangyu Zhang
Cheng Zhang
Zhihua Zhang
GAN
30
0
0
09 Aug 2020
From Rain Generation to Rain Removal
From Rain Generation to Rain Removal
Hong Wang
Zongsheng Yue
Qi Xie
Qian Zhao
Yefeng Zheng
Deyu Meng
53
5
0
08 Aug 2020
Previous
123...101112...141516
Next