ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05983
  4. Cited By
Disentangling by Factorising
v1v2v3 (latest)

Disentangling by Factorising

16 February 2018
Hyunjik Kim
A. Mnih
    CoGeOOD
ArXiv (abs)PDFHTML

Papers citing "Disentangling by Factorising"

50 / 790 papers shown
Title
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
101
599
0
10 Jul 2019
Demystifying Inter-Class Disentanglement
Demystifying Inter-Class Disentanglement
Aviv Gabbay
Yedid Hoshen
DRL
65
56
0
27 Jun 2019
Tuning-Free Disentanglement via Projection
Tuning-Free Disentanglement via Projection
Yue Bai
L. Duan
108
3
0
27 Jun 2019
InfoGAN-CR and ModelCentrality: Self-supervised Model Training and
  Selection for Disentangling GANs
InfoGAN-CR and ModelCentrality: Self-supervised Model Training and Selection for Disentangling GANs
Zinan Lin
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
DRL
110
37
0
14 Jun 2019
Deep Music Analogy Via Latent Representation Disentanglement
Deep Music Analogy Via Latent Representation Disentanglement
Ruihan Yang
Dingsu Wang
Ziyu Wang
Tianyao Chen
Junyan Jiang
Gus Xia
CoGeDRL
93
69
0
09 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OODDRL
125
139
0
07 Jun 2019
Latent feature disentanglement for 3D meshes
Latent feature disentanglement for 3D meshes
J. Levinson
Avneesh Sud
A. Makadia
3DVCoGeDRL
102
8
0
07 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaMLOOD
196
334
0
06 Jun 2019
Information Competing Process for Learning Diversified Representations
Information Competing Process for Learning Diversified Representations
Jie Hu
Rongrong Ji
Shengchuan Zhang
Xiaoshuai Sun
QiXiang Ye
Chia-Wen Lin
Q. Tian
193
14
0
04 Jun 2019
Weakly Supervised Disentanglement by Pairwise Similarities
Weakly Supervised Disentanglement by Pairwise Similarities
Junxiang Chen
Kayhan Batmanghelich
CoGeDRL
60
54
0
03 Jun 2019
Improving VAEs' Robustness to Adversarial Attack
Improving VAEs' Robustness to Adversarial Attack
M. Willetts
A. Camuto
Tom Rainforth
Stephen J. Roberts
Chris Holmes
DRLAAML
66
5
0
01 Jun 2019
On the Fairness of Disentangled Representations
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaMLDRL
81
227
0
31 May 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OODDRL
96
80
0
29 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
106
210
0
29 May 2019
Overlearning Reveals Sensitive Attributes
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
91
157
0
28 May 2019
Discrete Infomax Codes for Supervised Representation Learning
Discrete Infomax Codes for Supervised Representation Learning
Yoonho Lee
Wonjae Kim
Wonpyo Park
Seungjin Choi
57
4
0
28 May 2019
Unsupervised Object Segmentation by Redrawing
Unsupervised Object Segmentation by Redrawing
Mickaël Chen
Thierry Artières
Ludovic Denoyer
111
141
0
27 May 2019
A Plug-in Method for Representation Factorization in Connectionist
  Models
A Plug-in Method for Representation Factorization in Connectionist Models
Jee Seok Yoon
Wonjun Ko
Heung-Il Suk
50
1
0
27 May 2019
OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal
  Regularization
OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal Regularization
Bingchen Liu
Yizhe Zhu
Zuohui Fu
Gerard de Melo
Ahmed Elgammal
CML
115
43
0
26 May 2019
Not All Features Are Equal: Feature Leveling Deep Neural Networks for
  Better Interpretation
Not All Features Are Equal: Feature Leveling Deep Neural Networks for Better Interpretation
Yingjing Lu
Runde Yang
MILM
36
2
0
24 May 2019
Learning Discrete and Continuous Factors of Data via Alternating
  Disentanglement
Learning Discrete and Continuous Factors of Data via Alternating Disentanglement
Yeonwoo Jeong
Hyun Oh Song
53
49
0
23 May 2019
On Variational Bounds of Mutual Information
On Variational Bounds of Mutual Information
Ben Poole
Sherjil Ozair
Aaron van den Oord
Alexander A. Alemi
George Tucker
SSL
135
816
0
16 May 2019
Flat Metric Minimization with Applications in Generative Modeling
Flat Metric Minimization with Applications in Generative Modeling
Thomas Möllenhoff
Daniel Cremers
47
5
0
12 May 2019
Hierarchical Policy Learning is Sensitive to Goal Space Design
Hierarchical Policy Learning is Sensitive to Goal Space Design
Zach Dwiel
Madhavun Candadai
Mariano Phielipp
Arjun K. Bansal
79
15
0
04 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRLCMLCoGe
103
124
0
03 May 2019
Learning Programmatically Structured Representations with Perceptor
  Gradients
Learning Programmatically Structured Representations with Perceptor Gradients
Svetlin Penkov
S. Ramamoorthy
58
10
0
02 May 2019
Attribute Guided Unpaired Image-to-Image Translation with
  Semi-supervised Learning
Attribute Guided Unpaired Image-to-Image Translation with Semi-supervised Learning
Xinyang Li
Jie Hu
Shengchuan Zhang
Xiaopeng Hong
QiXiang Ye
Chenglin Wu
Rongrong Ji
88
17
0
29 Apr 2019
Learning Interpretable Disentangled Representations using Adversarial
  VAEs
Learning Interpretable Disentangled Representations using Adversarial VAEs
Mhd Hasan Sarhan
Abouzar Eslami
Nassir Navab
Shadi Albarqouni
DRLOOD
133
21
0
17 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
59
17
0
15 Apr 2019
Variational AutoEncoder For Regression: Application to Brain Aging
  Analysis
Variational AutoEncoder For Regression: Application to Brain Aging Analysis
Qingyu Zhao
Ehsan Adeli
N. Honnorat
Tuo Leng
K. Pohl
DRLBDL
88
85
0
11 Apr 2019
Feature-Based Interpolation and Geodesics in the Latent Spaces of
  Generative Models
Feature-Based Interpolation and Geodesics in the Latent Spaces of Generative Models
Lukasz Struski
M. Sadowski
Tomasz Danel
Jacek Tabor
Igor T. Podolak
DiffM
85
7
0
06 Apr 2019
Variational Adversarial Active Learning
Variational Adversarial Active Learning
Samarth Sinha
Sayna Ebrahimi
Trevor Darrell
GANDRLVLMSSL
140
580
0
31 Mar 2019
Wasserstein Dependency Measure for Representation Learning
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Yoshua Bengio
Aaron van den Oord
Sergey Levine
P. Sermanet
SSLDRL
146
119
0
28 Mar 2019
Small Data Challenges in Big Data Era: A Survey of Recent Progress on
  Unsupervised and Semi-Supervised Methods
Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods
Guo-Jun Qi
Jiebo Luo
SSL
61
246
0
27 Mar 2019
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL
  Vanishing
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
Hao Fu
Chunyuan Li
Xiaodong Liu
Jianfeng Gao
Asli Celikyilmaz
Lawrence Carin
ODL
85
368
0
25 Mar 2019
Disentangled Representation Learning in Cardiac Image Analysis
Disentangled Representation Learning in Cardiac Image Analysis
A. Chartsias
T. Joyce
G. Papanastasiou
M. Williams
D. Newby
R. Dharmakumar
Sotirios A. Tsaftaris
DRL
138
128
0
22 Mar 2019
Unsupervised and interpretable scene discovery with
  Discrete-Attend-Infer-Repeat
Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat
Duo Wang
M. Jamnik
Pietro Lio
BDLOCL
113
5
0
14 Mar 2019
Multi-Object Representation Learning with Iterative Variational
  Inference
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCLSSL
106
510
0
01 Mar 2019
Non-linear ICA based on Cramer-Wold metric
Non-linear ICA based on Cramer-Wold metric
Przemysław Spurek
A. Nowak
Jacek Tabor
Lukasz Maziarka
Stanislaw Jastrzebski
CML
17
5
0
01 Mar 2019
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
Masanori Yamada
Heecheol Kim
Kosuke Miyoshi
Hiroshi Yamakawa
CMLDRLCoGe
28
4
0
22 Feb 2019
Contrastive Variational Autoencoder Enhances Salient Features
Contrastive Variational Autoencoder Enhances Salient Features
Abubakar Abid
James Zou
DRL
74
65
0
12 Feb 2019
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Minyoung Kim
Yuting Wang
Pritish Sahu
Vladimir Pavlovic
CoGeCMLDRL
83
40
0
05 Feb 2019
Disentangling and Learning Robust Representations with Natural
  Clustering
Disentangling and Learning Robust Representations with Natural Clustering
Javier Antorán
A. Miguel
CoGeOODCMLDRL
65
19
0
27 Jan 2019
Learning Disentangled Representations with Reference-Based Variational
  Autoencoders
Learning Disentangled Representations with Reference-Based Variational Autoencoders
Adria Ruiz
Oriol Martínez
Xavier Binefa
Jakob Verbeek
OODCoGeDRL
46
27
0
24 Jan 2019
Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps
  for Time Series Prediction
Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction
Bryan Lim
S. Zohren
Stephen J. Roberts
BDLAI4TS
61
40
0
23 Jan 2019
Composition and decomposition of GANs
Composition and decomposition of GANs
Yeu-Chern Harn
Zhenghao Chen
V. Jojic
CoGeGAN
34
0
0
23 Jan 2019
MONet: Unsupervised Scene Decomposition and Representation
MONet: Unsupervised Scene Decomposition and Representation
Christopher P. Burgess
Loic Matthey
Nicholas Watters
Rishabh Kabra
I. Higgins
M. Botvinick
Alexander Lerchner
OCL
119
531
0
22 Jan 2019
Spatial Broadcast Decoder: A Simple Architecture for Learning
  Disentangled Representations in VAEs
Spatial Broadcast Decoder: A Simple Architecture for Learning Disentangled Representations in VAEs
Nicholas Watters
Loic Matthey
Christopher P. Burgess
Alexander Lerchner
CoGe
107
169
0
21 Jan 2019
Sampling Using Neural Networks for colorizing the grayscale images
Sampling Using Neural Networks for colorizing the grayscale images
Wonbong Jang
GANDiffM
38
1
0
27 Dec 2018
A Factorial Mixture Prior for Compositional Deep Generative Models
A Factorial Mixture Prior for Compositional Deep Generative Models
Ulrich Paquet
Sumedh Ghaisas
O. Tieleman
CoGe
32
1
0
18 Dec 2018
Previous
123...141516
Next