Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.01396
Cited By
v1
v2
v3 (latest)
To understand deep learning we need to understand kernel learning
5 February 2018
M. Belkin
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"To understand deep learning we need to understand kernel learning"
50 / 271 papers shown
Title
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
129
96
0
02 Mar 2021
Neural Generalization of Multiple Kernel Learning
Ahamad Navid Ghanizadeh
Kamaledin Ghiasi-Shirazi
R. Monsefi
Mohammadreza Qaraei
25
2
0
26 Feb 2021
On the Inherent Regularization Effects of Noise Injection During Training
Oussama Dhifallah
Yue M. Lu
61
30
0
15 Feb 2021
Deep Learning Generalization and the Convex Hull of Training Sets
Roozbeh Yousefzadeh
67
20
0
25 Jan 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
80
3
0
12 Jan 2021
Benign overfitting without concentration
Zongyuan Shang
MLT
32
1
0
04 Jan 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
86
51
0
16 Dec 2020
On Generalization of Adaptive Methods for Over-parameterized Linear Regression
Vatsal Shah
Soumya Basu
Anastasios Kyrillidis
Sujay Sanghavi
AI4CE
59
4
0
28 Nov 2020
Metric Transforms and Low Rank Matrices via Representation Theory of the Real Hyperrectangle
Josh Alman
T. Chu
Gary Miller
Shyam Narayanan
Mark Sellke
Zhao Song
38
1
0
23 Nov 2020
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
Ke Wang
Christos Thrampoulidis
98
29
0
18 Nov 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
121
93
0
04 Nov 2020
Kernel Dependence Network
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
18
0
0
04 Nov 2020
Which Minimizer Does My Neural Network Converge To?
Manuel Nonnenmacher
David Reeb
Ingo Steinwart
ODL
32
4
0
04 Nov 2020
Over-parametrized neural networks as under-determined linear systems
Austin R. Benson
Anil Damle
Alex Townsend
11
0
0
29 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
110
63
0
21 Oct 2020
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
97
11
0
16 Oct 2020
On the Universality of the Double Descent Peak in Ridgeless Regression
David Holzmüller
98
13
0
05 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
110
90
0
30 Sep 2020
Experimental Design for Overparameterized Learning with Application to Single Shot Deep Active Learning
N. Shoham
H. Avron
BDL
39
12
0
27 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
193
94
0
22 Sep 2020
A Principle of Least Action for the Training of Neural Networks
Skander Karkar
Ibrahhim Ayed
Emmanuel de Bézenac
Patrick Gallinari
AI4CE
69
10
0
17 Sep 2020
Distributional Generalization: A New Kind of Generalization
Preetum Nakkiran
Yamini Bansal
OOD
85
42
0
17 Sep 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
108
167
0
07 Sep 2020
Extreme Memorization via Scale of Initialization
Harsh Mehta
Ashok Cutkosky
Behnam Neyshabur
60
20
0
31 Aug 2020
β
β
β
-Variational Classifiers Under Attack
Marco Maggipinto
M. Terzi
Gian Antonio Susto
AAML
OOD
27
1
0
20 Aug 2020
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
61
125
0
15 Aug 2020
Do ideas have shape? Idea registration as the continuous limit of artificial neural networks
H. Owhadi
155
14
0
10 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
84
112
0
10 Aug 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
248
472
0
09 Aug 2020
Benign Overfitting and Noisy Features
Zhu Li
Weijie Su
Dino Sejdinovic
63
22
0
06 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
162
61
0
03 Aug 2020
Implicit Regularization via Neural Feature Alignment
A. Baratin
Thomas George
César Laurent
R. Devon Hjelm
Guillaume Lajoie
Pascal Vincent
Simon Lacoste-Julien
73
6
0
03 Aug 2020
A finite sample analysis of the benign overfitting phenomenon for ridge function estimation
E. Caron
Stéphane Chrétien
MLT
67
6
0
25 Jul 2020
Prediction in latent factor regression: Adaptive PCR and beyond
Xin Bing
F. Bunea
Seth Strimas-Mackey
M. Wegkamp
47
2
0
20 Jul 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
89
58
0
08 Jul 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
155
96
0
03 Jul 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
170
190
0
23 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
71
4
0
19 Jun 2020
Revisiting minimum description length complexity in overparameterized models
Raaz Dwivedi
Chandan Singh
Bin Yu
Martin J. Wainwright
63
5
0
17 Jun 2020
Interpolation and Learning with Scale Dependent Kernels
Nicolò Pagliana
Alessandro Rudi
Ernesto De Vito
Lorenzo Rosasco
91
8
0
17 Jun 2020
Using Wavelets and Spectral Methods to Study Patterns in Image-Classification Datasets
Roozbeh Yousefzadeh
Furong Huang
51
6
0
17 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
66
8
0
11 Jun 2020
Asymptotics of Ridge (less) Regression under General Source Condition
Dominic Richards
Jaouad Mourtada
Lorenzo Rosasco
88
73
0
11 Jun 2020
On Uniform Convergence and Low-Norm Interpolation Learning
Lijia Zhou
Danica J. Sutherland
Nathan Srebro
69
30
0
10 Jun 2020
Double Descent Risk and Volume Saturation Effects: A Geometric Perspective
Prasad Cheema
M. Sugiyama
113
3
0
08 Jun 2020
Learning from Non-Random Data in Hilbert Spaces: An Optimal Recovery Perspective
S. Foucart
Chunyang Liao
Shahin Shahrampour
Yinsong Wang
34
0
0
05 Jun 2020
Quantifying the Uncertainty of Precision Estimates for Rule based Text Classifiers
J. Nutaro
Özgür Özmen
23
0
0
19 May 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
114
151
0
16 May 2020
Provable Robust Classification via Learned Smoothed Densities
Saeed Saremi
R. Srivastava
AAML
85
3
0
09 May 2020
Mathematical foundations of stable RKHSs
M. Bisiacco
G. Pillonetto
17
26
0
06 May 2020
Previous
1
2
3
4
5
6
Next