Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.01396
Cited By
v1
v2
v3 (latest)
To understand deep learning we need to understand kernel learning
5 February 2018
M. Belkin
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"To understand deep learning we need to understand kernel learning"
50 / 271 papers shown
Title
On Emergence of Clean-Priority Learning in Early Stopped Neural Networks
Chaoyue Liu
Amirhesam Abedsoltan
M. Belkin
NoLa
63
5
0
05 Jun 2023
From Tempered to Benign Overfitting in ReLU Neural Networks
Guy Kornowski
Gilad Yehudai
Ohad Shamir
91
13
0
24 May 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
102
14
0
23 May 2023
Prediction Risk and Estimation Risk of the Ridgeless Least Squares Estimator under General Assumptions on Regression Errors
Sungyoon Lee
S. Lee
43
0
0
22 May 2023
On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural Networks with Linear Activations
A. C. B. D. Oliveira
Milad Siami
Eduardo Sontag
110
2
0
17 May 2023
ChatGPT-Like Large-Scale Foundation Models for Prognostics and Health Management: A Survey and Roadmaps
Yanfang Li
Huan Wang
Muxia Sun
LM&MA
AI4TS
AI4CE
103
59
0
10 May 2023
Approximation by non-symmetric networks for cross-domain learning
H. Mhaskar
79
1
0
06 May 2023
New Equivalences Between Interpolation and SVMs: Kernels and Structured Features
Chiraag Kaushik
Andrew D. McRae
Mark A. Davenport
Vidya Muthukumar
94
2
0
03 May 2023
Double and Single Descent in Causal Inference with an Application to High-Dimensional Synthetic Control
Jann Spiess
Guido Imbens
A. Venugopal
CML
76
8
0
01 May 2023
Understanding Overfitting in Adversarial Training via Kernel Regression
Teng Zhang
Kang Li
56
2
0
13 Apr 2023
Deep neural networks have an inbuilt Occam's razor
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
62
16
0
13 Apr 2023
Towards Understanding How Data Augmentation Works with Imbalanced Data
Damien Dablain
Nitesh Chawla
AI4CE
65
2
0
12 Apr 2023
Theoretical Characterization of the Generalization Performance of Overfitted Meta-Learning
Peizhong Ju
Yitao Liang
Ness B. Shroff
MLT
AI4CE
62
3
0
09 Apr 2023
On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach
Mohit Kumar
Bernhard A. Moser
Lukas Fischer
73
3
0
03 Apr 2023
On Feature Scaling of Recursive Feature Machines
Arunav Gupta
Rohit Mishra
William Luu
Mehdi Bouassami
29
1
0
28 Mar 2023
Benign Overfitting for Two-layer ReLU Convolutional Neural Networks
Yiwen Kou
Zi-Yuan Chen
Yuanzhou Chen
Quanquan Gu
MLT
94
17
0
07 Mar 2023
On Statistical Properties of Sharpness-Aware Minimization: Provable Guarantees
Kayhan Behdin
Rahul Mazumder
127
6
0
23 Feb 2023
Generalization Ability of Wide Neural Networks on
R
\mathbb{R}
R
Jianfa Lai
Manyun Xu
Rui Chen
Qi-Rong Lin
84
23
0
12 Feb 2023
Theory on Forgetting and Generalization of Continual Learning
Sen Lin
Peizhong Ju
Yitao Liang
Ness B. Shroff
CLL
88
47
0
12 Feb 2023
Unsupervised Neighborhood Propagation Kernel Layers for Semi-supervised Node Classification
Sonny Achten
F. Tonin
Panagiotis Patrinos
Johan A. K. Suykens
90
4
0
31 Jan 2023
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
105
45
0
30 Jan 2023
Supervision Complexity and its Role in Knowledge Distillation
Hrayr Harutyunyan
A. S. Rawat
A. Menon
Seungyeon Kim
Surinder Kumar
92
12
0
28 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
64
0
0
26 Jan 2023
A Data-Adaptive Prior for Bayesian Learning of Kernels in Operators
Neil K. Chada
Quanjun Lang
Fei Lu
Xiang Wang
69
3
0
29 Dec 2022
T-SEA: Transfer-based Self-Ensemble Attack on Object Detection
Hao Huang
Ziyan Chen
Huanran Chen
Yongtao Wang
Ke-Yue Zhang
AAML
110
59
0
16 Nov 2022
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
116
18
0
11 Nov 2022
Transfer Learning with Kernel Methods
Adityanarayanan Radhakrishnan
Max Ruiz Luyten
Neha Prasad
Caroline Uhler
52
25
0
01 Nov 2022
Learning Ability of Interpolating Deep Convolutional Neural Networks
Tiancong Zhou
X. Huo
AI4CE
99
13
0
25 Oct 2022
Deep Neural Networks as the Semi-classical Limit of Topological Quantum Neural Networks: The problem of generalisation
A. Marcianò
De-Wei Chen
Filippo Fabrocini
C. Fields
M. Lulli
Emanuele Zappala
GNN
37
5
0
25 Oct 2022
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
79
6
0
14 Oct 2022
Block-wise Training of Residual Networks via the Minimizing Movement Scheme
Skander Karkar
Ibrahim Ayed
Emmanuel de Bézenac
Patrick Gallinari
68
1
0
03 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
110
33
0
30 Sep 2022
Top-Tuning: a study on transfer learning for an efficient alternative to fine tuning for image classification with fast kernel methods
P. D. Alfano
Vito Paolo Pastore
Lorenzo Rosasco
Francesca Odone
49
7
0
16 Sep 2022
Bounding generalization error with input compression: An empirical study with infinite-width networks
A. Galloway
A. Golubeva
Mahmoud Salem
Mihai Nica
Yani Andrew Ioannou
Graham W. Taylor
MLT
AI4CE
71
4
0
19 Jul 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
104
39
0
14 Jul 2022
Efficient Augmentation for Imbalanced Deep Learning
Damien Dablain
C. Bellinger
Bartosz Krawczyk
Nitesh Chawla
66
7
0
13 Jul 2022
Benign overfitting and adaptive nonparametric regression
J. Chhor
Suzanne Sigalla
Alexandre B. Tsybakov
44
3
0
27 Jun 2022
Max-Margin Works while Large Margin Fails: Generalization without Uniform Convergence
Margalit Glasgow
Colin Wei
Mary Wootters
Tengyu Ma
94
5
0
16 Jun 2022
Generalization for multiclass classification with overparameterized linear models
Vignesh Subramanian
Rahul Arya
A. Sahai
AI4CE
73
9
0
03 Jun 2022
Benign Overfitting in Classification: Provably Counter Label Noise with Larger Models
Kaiyue Wen
Jiaye Teng
J.N. Zhang
NoLa
48
5
0
01 Jun 2022
VC Theoretical Explanation of Double Descent
Eng Hock Lee
V. Cherkassky
57
3
0
31 May 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
82
20
0
27 May 2022
On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions
Daniel Beaglehole
M. Belkin
Parthe Pandit
62
11
0
26 May 2022
Bandwidth Selection for Gaussian Kernel Ridge Regression via Jacobian Control
Oskar Allerbo
Rebecka Jörnsten
69
2
0
24 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
92
16
0
13 May 2022
Ridgeless Regression with Random Features
Jian Li
Yong-Jin Liu
Yingying Zhang
39
2
0
01 May 2022
The Directional Bias Helps Stochastic Gradient Descent to Generalize in Kernel Regression Models
Yiling Luo
X. Huo
Y. Mei
44
0
0
29 Apr 2022
Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression
Theodor Misiakiewicz
67
40
0
21 Apr 2022
Deep Learning meets Nonparametric Regression: Are Weight-Decayed DNNs Locally Adaptive?
Kaiqi Zhang
Yu Wang
118
12
0
20 Apr 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
90
6
0
14 Apr 2022
Previous
1
2
3
4
5
6
Next