Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.01396
Cited By
v1
v2
v3 (latest)
To understand deep learning we need to understand kernel learning
5 February 2018
M. Belkin
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"To understand deep learning we need to understand kernel learning"
50 / 271 papers shown
Title
Deep Learning Generalization, Extrapolation, and Over-parameterization
Roozbeh Yousefzadeh
31
1
0
19 Mar 2022
On the Generalization Mystery in Deep Learning
S. Chatterjee
Piotr Zielinski
OOD
77
35
0
18 Mar 2022
More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize
Alexander Wei
Wei Hu
Jacob Steinhardt
112
72
0
11 Mar 2022
Chained Generalisation Bounds
Eugenio Clerico
Amitis Shidani
George Deligiannidis
Arnaud Doucet
AI4CE
FedML
76
13
0
02 Mar 2022
Memorize to Generalize: on the Necessity of Interpolation in High Dimensional Linear Regression
Chen Cheng
John C. Duchi
Rohith Kuditipudi
56
12
0
20 Feb 2022
Geometric Regularization from Overparameterization
Nicholas J. Teague
53
1
0
18 Feb 2022
Interpolation and Regularization for Causal Learning
L. C. Vankadara
Luca Rendsburg
U. V. Luxburg
Debarghya Ghoshdastidar
CML
55
1
0
18 Feb 2022
On the Origins of the Block Structure Phenomenon in Neural Network Representations
Thao Nguyen
M. Raghu
Simon Kornblith
93
13
0
15 Feb 2022
Benign Overfitting in Two-layer Convolutional Neural Networks
Yuan Cao
Zixiang Chen
M. Belkin
Quanquan Gu
MLT
93
90
0
14 Feb 2022
Learning Representation from Neural Fisher Kernel with Low-rank Approximation
Ruixiang Zhang
Shuangfei Zhai
Etai Littwin
J. Susskind
SSL
72
3
0
04 Feb 2022
Faster Convergence of Local SGD for Over-Parameterized Models
Tiancheng Qin
S. Rasoul Etesami
César A. Uribe
FedML
88
6
0
30 Jan 2022
Kernel Methods and Multi-layer Perceptrons Learn Linear Models in High Dimensions
Mojtaba Sahraee-Ardakan
M. Emami
Parthe Pandit
S. Rangan
A. Fletcher
96
9
0
20 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
78
11
0
31 Dec 2021
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
50
1
0
25 Dec 2021
Error Bounds for a Matrix-Vector Product Approximation with Deep ReLU Neural Networks
T. Getu
54
2
0
25 Nov 2021
Importance of Kernel Bandwidth in Quantum Machine Learning
Ruslan Shaydulin
Stefan M. Wild
99
39
0
09 Nov 2021
Harmless interpolation in regression and classification with structured features
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
186
11
0
09 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
120
85
0
29 Oct 2021
Learning curves for Gaussian process regression with power-law priors and targets
Hui Jin
P. Banerjee
Guido Montúfar
70
18
0
23 Oct 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
126
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
112
12
0
21 Oct 2021
Learning in High Dimension Always Amounts to Extrapolation
Randall Balestriero
J. Pesenti
Yann LeCun
129
104
0
18 Oct 2021
NFT-K: Non-Fungible Tangent Kernels
Sina Alemohammad
Hossein Babaei
C. Barberan
Naiming Liu
Lorenzo Luzi
Blake Mason
Richard G. Baraniuk
AAML
46
0
0
11 Oct 2021
Kernel Interpolation as a Bayes Point Machine
Jeremy Bernstein
Alexander R. Farhang
Yisong Yue
BDL
71
4
0
08 Oct 2021
VC dimension of partially quantized neural networks in the overparametrized regime
Yutong Wang
Clayton D. Scott
81
1
0
06 Oct 2021
Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil
Raphael Gontijo-Lopes
Rebecca Roelofs
111
30
0
06 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
69
1
0
27 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
117
72
0
06 Sep 2021
When and how epochwise double descent happens
Cory Stephenson
Tyler Lee
82
15
0
26 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
93
16
0
05 Aug 2021
Mitigating deep double descent by concatenating inputs
John Chen
Qihan Wang
Anastasios Kyrillidis
BDL
37
3
0
02 Jul 2021
Assessing Generalization of SGD via Disagreement
Yiding Jiang
Vaishnavh Nagarajan
Christina Baek
J. Zico Kolter
111
115
0
25 Jun 2021
Shallow Representation is Deep: Learning Uncertainty-aware and Worst-case Random Feature Dynamics
Diego Agudelo-España
Yassine Nemmour
Bernhard Schölkopf
Jia-Jie Zhu
OOD
BDL
48
0
0
24 Jun 2021
Compression Implies Generalization
Allan Grønlund
M. Hogsgaard
Lior Kamma
Kasper Green Larsen
MLT
AI4CE
23
0
0
15 Jun 2021
Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions
Bruno Loureiro
G. Sicuro
Cédric Gerbelot
Alessandro Pacco
Florent Krzakala
Lenka Zdeborová
76
62
0
07 Jun 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi Zhou
Arthur Gretton
MLT
105
35
0
06 Jun 2021
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
84
9
0
04 Jun 2021
Out-of-Distribution Generalization in Kernel Regression
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
OODD
OOD
57
13
0
04 Jun 2021
Framing RNN as a kernel method: A neural ODE approach
Adeline Fermanian
Pierre Marion
Jean-Philippe Vert
Gérard Biau
91
26
0
02 Jun 2021
Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation
M. Belkin
73
186
0
29 May 2021
Latent Gaussian Model Boosting
Fabio Sigrist
AI4CE
68
23
0
19 May 2021
Uniform Convergence, Adversarial Spheres and a Simple Remedy
Gregor Bachmann
Seyed-Mohsen Moosavi-Dezfooli
Thomas Hofmann
AAML
38
8
0
07 May 2021
Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures
Yuan Cao
Quanquan Gu
M. Belkin
81
53
0
28 Apr 2021
How rotational invariance of common kernels prevents generalization in high dimensions
Konstantin Donhauser
Mingqi Wu
Fanny Yang
85
24
0
09 Apr 2021
Fitting Elephants
P. Mitra
26
0
0
31 Mar 2021
Weighted Neural Tangent Kernel: A Generalized and Improved Network-Induced Kernel
Lei Tan
Shutong Wu
Xiaolin Huang
28
2
0
22 Mar 2021
Comments on Leo Breiman's paper 'Statistical Modeling: The Two Cultures' (Statistical Science, 2001, 16(3), 199-231)
Jelena Bradic
Yinchu Zhu
27
0
0
21 Mar 2021
On the Generalization Power of Overfitted Two-Layer Neural Tangent Kernel Models
Peizhong Ju
Xiaojun Lin
Ness B. Shroff
MLT
71
10
0
09 Mar 2021
Exact Gap between Generalization Error and Uniform Convergence in Random Feature Models
Zitong Yang
Yu Bai
Song Mei
71
18
0
08 Mar 2021
Trading Signals In VIX Futures
M. Avellaneda
T. Li
A. Papanicolaou
Gaozhan Wang
22
4
0
02 Mar 2021
Previous
1
2
3
4
5
6
Next