Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
v1
v2
v3 (latest)
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv (abs)
PDF
HTML
Github (222★)
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
50 / 625 papers shown
Title
A Distributed SGD Algorithm with Global Sketching for Deep Learning Training Acceleration
Lingfei Dai
Boyu Diao
Chao Li
Yongjun Xu
68
5
0
13 Aug 2021
Communication Optimization in Large Scale Federated Learning using Autoencoder Compressed Weight Updates
Srikanth Chandar
Pravin Chandran
Raghavendra Bhat
Avinash Chakravarthi
AI4CE
70
3
0
12 Aug 2021
PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
MIACV
45
37
0
10 Aug 2021
Understanding Human Innate Immune System Dependencies using Graph Neural Networks
Shagufta Henna
GNN
AI4CE
57
0
0
05 Aug 2021
Learning a Neural Diff for Speech Models
J. Macoskey
Grant P. Strimel
Ariya Rastrow
54
2
0
03 Aug 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
97
58
0
02 Aug 2021
Communication-Efficient Federated Learning via Predictive Coding
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
78
14
0
02 Aug 2021
FedLab: A Flexible Federated Learning Framework
Dun Zeng
Siqi Liang
Xiangjing Hu
Hui Wang
Zenglin Xu
FedML
80
119
0
24 Jul 2021
RingFed: Reducing Communication Costs in Federated Learning on Non-IID Data
Guang Yang
Ke Mu
Chunhe Song
Zhijia Yang
Tierui Gong
FedML
33
16
0
19 Jul 2021
An Experimental Study of Data Heterogeneity in Federated Learning Methods for Medical Imaging
Liangqiong Qu
N. Balachandar
D. Rubin
66
24
0
18 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
279
422
0
14 Jul 2021
Fine-Grained AutoAugmentation for Multi-Label Classification
Y. Wang
Hesen Chen
Fangyi Zhang
Yaohua Wang
Xiuyu Sun
Ming Lin
Hao Li
97
2
0
12 Jul 2021
Unity Perception: Generate Synthetic Data for Computer Vision
S. Borkman
A. Crespi
S. Dhakad
Sujoy Ganguly
Jonathan Hogins
...
Cesar Romero
Wesley Smith
Alex Thaman
Samuel Warren
Nupur Yadav
3DV
SyDa
VLM
81
102
0
09 Jul 2021
KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks
J. G. Pauloski
Qi Huang
Lei Huang
Shivaram Venkataraman
Kyle Chard
Ian Foster
Zhao-jie Zhang
86
29
0
04 Jul 2021
Gradient-Leakage Resilient Federated Learning
Wenqi Wei
Ling Liu
Yanzhao Wu
Gong Su
Arun Iyengar
FedML
72
91
0
02 Jul 2021
Over-the-Air Federated Multi-Task Learning
Haiyan Ma
Xiaojun Yuan
Dian Fan
Z. Ding
Xin Wang
Jun Fang
25
4
0
27 Jun 2021
AdaptCL: Efficient Collaborative Learning with Dynamic and Adaptive Pruning
Guangmeng Zhou
Ke Xu
Qi Li
Yang Liu
Yi Zhao
54
8
0
27 Jun 2021
Handling Data Heterogeneity with Generative Replay in Collaborative Learning for Medical Imaging
Liangqiong Qu
N. Balachandar
Miao Zhang
D. Rubin
MedIm
89
23
0
24 Jun 2021
Secure Distributed Training at Scale
Eduard A. Gorbunov
Alexander Borzunov
Michael Diskin
Max Ryabinin
FedML
90
15
0
21 Jun 2021
CD-SGD: Distributed Stochastic Gradient Descent with Compression and Delay Compensation
Enda Yu
Dezun Dong
Yemao Xu
Shuo Ouyang
Xiangke Liao
49
5
0
21 Jun 2021
Fine-Grained Data Selection for Improved Energy Efficiency of Federated Edge Learning
A. Albaseer
M. Abdallah
Ala I. Al-Fuqaha
A. Erbad
76
35
0
20 Jun 2021
Distributed Deep Learning in Open Collaborations
Michael Diskin
Alexey Bukhtiyarov
Max Ryabinin
Lucile Saulnier
Quentin Lhoest
...
Denis Mazur
Ilia Kobelev
Yacine Jernite
Thomas Wolf
Gennady Pekhimenko
FedML
129
59
0
18 Jun 2021
Federated Learning for Internet of Things: A Federated Learning Framework for On-device Anomaly Data Detection
Tuo Zhang
Chaoyang He
Tian-Shya Ma
Lei Gao
Mark Ma
Salman Avestimehr
FedML
99
119
0
15 Jun 2021
SynthASR: Unlocking Synthetic Data for Speech Recognition
A. Fazel
Wei Yang
Yulan Liu
Roberto Barra-Chicote
Yi Meng
Roland Maas
J. Droppo
SyDa
110
51
0
14 Jun 2021
Compressed Gradient Tracking for Decentralized Optimization Over General Directed Networks
Zhuoqing Song
Lei Shi
Shi Pu
Ming Yan
95
25
0
14 Jun 2021
CFedAvg: Achieving Efficient Communication and Fast Convergence in Non-IID Federated Learning
Haibo Yang
Jia Liu
Elizabeth S. Bentley
FedML
40
20
0
14 Jun 2021
Federated Learning Over Wireless Channels: Dynamic Resource Allocation and Task Scheduling
Shunfeng Chu
Jun Li
Jianxin Wang
Zhe Wang
Ming Ding
Yijin Zang
Yuwen Qian
Wen Chen
72
16
0
13 Jun 2021
Communication-efficient SGD: From Local SGD to One-Shot Averaging
Artin Spiridonoff
Alexander Olshevsky
I. Paschalidis
FedML
110
20
0
09 Jun 2021
Theoretically Better and Numerically Faster Distributed Optimization with Smoothness-Aware Quantization Techniques
Bokun Wang
M. Safaryan
Peter Richtárik
MQ
37
10
0
07 Jun 2021
Neural Distributed Source Coding
Jay Whang
Alliot Nagle
Anish Acharya
Hyeji Kim
A. Dimakis
85
21
0
05 Jun 2021
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning
Maxime Vono
Vincent Plassier
Alain Durmus
Hadrien Hendrikx
Eric Moulines
FedML
93
36
0
01 Jun 2021
H-FL: A Hierarchical Communication-Efficient and Privacy-Protected Architecture for Federated Learning
He Yang
70
28
0
01 Jun 2021
Fast Federated Learning by Balancing Communication Trade-Offs
Milad Khademi Nori
Sangseok Yun
Il-Min Kim
FedML
77
57
0
23 May 2021
User-Level Label Leakage from Gradients in Federated Learning
A. Wainakh
Fabrizio G. Ventola
Till Müßig
Jens Keim
Carlos Garcia Cordero
Ephraim Zimmer
Tim Grube
Kristian Kersting
M. Mühlhäuser
FedML
AAML
72
55
0
19 May 2021
Compressed Communication for Distributed Training: Adaptive Methods and System
Yuchen Zhong
Cong Xie
Shuai Zheng
Yanghua Peng
74
9
0
17 May 2021
LocalNewton: Reducing Communication Bottleneck for Distributed Learning
Vipul Gupta
Avishek Ghosh
Michal Derezinski
Rajiv Khanna
Kannan Ramchandran
Michael W. Mahoney
77
13
0
16 May 2021
Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data
Hongda Wu
Ping Wang
FedML
98
143
0
14 May 2021
Slashing Communication Traffic in Federated Learning by Transmitting Clustered Model Updates
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Yi Pan
FedML
75
37
0
10 May 2021
OCTOPUS: Overcoming Performance andPrivatization Bottlenecks in Distributed Learning
Shuo Wang
Surya Nepal
Kristen Moore
M. Grobler
Carsten Rudolph
A. Abuadbba
FedML
67
8
0
03 May 2021
Personalized Federated Learning by Structured and Unstructured Pruning under Data Heterogeneity
Saeed Vahidian
Mahdi Morafah
Bill Lin
115
61
0
02 May 2021
GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
SILM
AAML
FedML
109
103
0
02 May 2021
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training
Jianfei Chen
Lianmin Zheng
Z. Yao
Dequan Wang
Ion Stoica
Michael W. Mahoney
Joseph E. Gonzalez
MQ
77
75
0
29 Apr 2021
NUQSGD: Provably Communication-efficient Data-parallel SGD via Nonuniform Quantization
Ali Ramezani-Kebrya
Fartash Faghri
Ilya Markov
V. Aksenov
Dan Alistarh
Daniel M. Roy
MQ
111
33
0
28 Apr 2021
Partitioning sparse deep neural networks for scalable training and inference
G. Demirci
Hakan Ferhatosmanoglu
35
11
0
23 Apr 2021
ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training
Chia-Yu Chen
Jiamin Ni
Songtao Lu
Xiaodong Cui
Pin-Yu Chen
...
Naigang Wang
Swagath Venkataramani
Vijayalakshmi Srinivasan
Wei Zhang
K. Gopalakrishnan
79
67
0
21 Apr 2021
Communication Efficient Federated Learning with Adaptive Quantization
Yuzhu Mao
Zihao Zhao
Guangfeng Yan
Yang Liu
Tian-Shing Lan
Linqi Song
Wenbo Ding
MQ
43
10
0
13 Apr 2021
Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models
Dheevatsa Mudigere
Y. Hao
Jianyu Huang
Zhihao Jia
Andrew Tulloch
...
Ajit Mathews
Lin Qiao
M. Smelyanskiy
Bill Jia
Vijay Rao
113
155
0
12 Apr 2021
Federated Learning: A Signal Processing Perspective
Tomer Gafni
Nir Shlezinger
Kobi Cohen
Yonina C. Eldar
H. Vincent Poor
FedML
102
130
0
31 Mar 2021
Threshold-Based Data Exclusion Approach for Energy-Efficient Federated Edge Learning
A. Albaseer
M. Abdallah
Ala I. Al-Fuqaha
A. Erbad
74
12
0
30 Mar 2021
1-Bit Compressive Sensing for Efficient Federated Learning Over the Air
Xin-Yue Fan
Yue Wang
Yan Huo
Z. Tian
FedML
73
34
0
30 Mar 2021
Previous
1
2
3
...
6
7
8
...
11
12
13
Next