ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07243
19
24

Compressed Gradient Tracking for Decentralized Optimization Over General Directed Networks

14 June 2021
Zhuoqing Song
Lei Shi
Shi Pu
Ming Yan
ArXivPDFHTML
Abstract

In this paper, we propose two communication efficient decentralized optimization algorithms over a general directed multi-agent network. The first algorithm, termed Compressed Push-Pull (CPP), combines the gradient tracking Push-Pull method with communication compression. We show that CPP is applicable to a general class of unbiased compression operators and achieves linear convergence rate for strongly convex and smooth objective functions. The second algorithm is a broadcast-like version of CPP (B-CPP), and it also achieves linear convergence rate under the same conditions on the objective functions. B-CPP can be applied in an asynchronous broadcast setting and further reduce communication costs compared to CPP. Numerical experiments complement the theoretical analysis and confirm the effectiveness of the proposed methods.

View on arXiv
Comments on this paper