Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
v1
v2
v3 (latest)
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv (abs)
PDF
HTML
Github (222★)
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
50 / 625 papers shown
Title
Auto-Precision Scaling for Distributed Deep Learning
Ruobing Han
J. Demmel
Yang You
43
5
0
20 Nov 2019
Understanding Top-k Sparsification in Distributed Deep Learning
Shaoshuai Shi
Xiaowen Chu
Ka Chun Cheung
Simon See
233
101
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
Shaoshuai Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
Xiaowen Chu
65
22
0
20 Nov 2019
Distributed Machine Learning through Heterogeneous Edge Systems
Han Hu
Dan Wang
Chuan Wu
71
43
0
16 Nov 2019
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
XINYAN DAI
Xiao Yan
Kaiwen Zhou
Han Yang
K. K. Ng
James Cheng
Yu Fan
FedML
68
47
0
12 Nov 2019
An Overview of Data-Importance Aware Radio Resource Management for Edge Machine Learning
Dingzhu Wen
Xiaoyang Li
Qunsong Zeng
Jinke Ren
Kaibin Huang
65
25
0
10 Nov 2019
A Crowdsourcing Framework for On-Device Federated Learning
Shashi Raj Pandey
N. H. Tran
M. Bennis
Y. Tun
Aunas Manzoor
Choong Seon Hong
FedML
73
253
0
04 Nov 2019
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
124
144
0
02 Nov 2019
Progressive Compressed Records: Taking a Byte out of Deep Learning Data
Michael Kuchnik
George Amvrosiadis
Virginia Smith
75
9
0
01 Nov 2019
Robust Federated Learning with Noisy Communication
F. Ang
Li Chen
Senior Member Ieee Nan Zhao
Senior Member Ieee Yunfei Chen
Weidong Wang
Feng Yu
FedML
58
117
0
01 Nov 2019
SPARQ-SGD: Event-Triggered and Compressed Communication in Decentralized Stochastic Optimization
Navjot Singh
Deepesh Data
Jemin George
Suhas Diggavi
88
23
0
31 Oct 2019
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
87
202
0
30 Oct 2019
E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings
Yue Wang
Ziyu Jiang
Xiaohan Chen
Pengfei Xu
Yang Zhao
Yingyan Lin
Zhangyang Wang
MQ
112
83
0
29 Oct 2019
Shielding Collaborative Learning: Mitigating Poisoning Attacks through Client-Side Detection
Lingchen Zhao
Shengshan Hu
Qian Wang
Jianlin Jiang
Chao Shen
Xiangyang Luo
Pengfei Hu
AAML
72
96
0
29 Oct 2019
Gradient Sparification for Asynchronous Distributed Training
Zijie Yan
FedML
26
1
0
24 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
97
53
0
21 Oct 2019
Machine Learning Systems for Highly-Distributed and Rapidly-Growing Data
Kevin Hsieh
SyDa
OOD
38
4
0
18 Oct 2019
Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks
Jy-yong Sohn
Dong-Jun Han
Beongjun Choi
Jaekyun Moon
FedML
98
37
0
14 Oct 2019
Eavesdrop the Composition Proportion of Training Labels in Federated Learning
Lixu Wang
Shichao Xu
Tianlin Li
Qi Zhu
FedML
83
63
0
14 Oct 2019
JSDoop and TensorFlow.js: Volunteer Distributed Web Browser-Based Neural Network Training
José Á. Morell
Andrés Camero
Enrique Alba
58
9
0
12 Oct 2019
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
47
5
0
09 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
197
1,014
0
04 Oct 2019
Minimax Bounds for Distributed Logistic Regression
Florent Chiaroni
N. Hueber
FedML
32
5
0
03 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
192
575
0
01 Oct 2019
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
160
470
0
26 Sep 2019
Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients
Jun Sun
Tianyi Chen
G. Giannakis
Zaiyue Yang
88
95
0
17 Sep 2019
Neural Machine Translation with 4-Bit Precision and Beyond
Alham Fikri Aji
Kenneth Heafield
MQ
22
7
0
13 Sep 2019
Accelerating Training using Tensor Decomposition
Mostafa Elhoushi
Ye Tian
Zihao Chen
F. Shafiq
Joey Yiwei Li
39
3
0
10 Sep 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
41
22
0
10 Sep 2019
Hierarchical Federated Learning Across Heterogeneous Cellular Networks
Mehdi Salehi Heydar Abad
Emre Ozfatura
Deniz Gunduz
Ozgur Ercetin
FedML
143
314
0
05 Sep 2019
Beyond Human-Level Accuracy: Computational Challenges in Deep Learning
Joel Hestness
Newsha Ardalani
G. Diamos
64
68
0
03 Sep 2019
Big Data Analytics for Large Scale Wireless Networks: Challenges and Opportunities
Hongning Dai
Raymond Chi-Wing Wong
Hao Wang
Zibin Zheng
A. Vasilakos
AI4CE
GNN
63
65
0
02 Sep 2019
Big Data Analytics for Manufacturing Internet of Things: Opportunities, Challenges and Enabling Technologies
Hongning Dai
Hao Wang
Guangquan Xu
J. Wan
Muhammad Imran
66
251
0
01 Sep 2019
Recent Advances in Deep Learning for Object Detection
Xiongwei Wu
Doyen Sahoo
Guosheng Lin
VLM
ObjD
131
824
0
10 Aug 2019
Machine Learning at the Network Edge: A Survey
M. G. Sarwar Murshed
Chris Murphy
Daqing Hou
Nazar Khan
Ganesh Ananthanarayanan
Faraz Hussain
92
391
0
31 Jul 2019
Taming Momentum in a Distributed Asynchronous Environment
Ido Hakimi
Saar Barkai
Moshe Gabel
Assaf Schuster
93
23
0
26 Jul 2019
Benchmarking TPU, GPU, and CPU Platforms for Deep Learning
Y. Wang
Gu-Yeon Wei
David Brooks
ELM
VLM
97
278
0
24 Jul 2019
Federated Learning over Wireless Fading Channels
M. Amiri
Deniz Gunduz
125
515
0
23 Jul 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
130
1,014
0
23 Jul 2019
Decentralized Deep Learning with Arbitrary Communication Compression
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
92
235
0
22 Jul 2019
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
Xiaofei Wang
Yiwen Han
Victor C. M. Leung
Dusit Niyato
Xueqiang Yan
Xu Chen
100
1,002
0
19 Jul 2019
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent
Shuheng Shen
Linli Xu
Jingchang Liu
Xianfeng Liang
Yifei Cheng
ODL
FedML
68
24
0
28 Jun 2019
Database Meets Deep Learning: Challenges and Opportunities
Wei Wang
Meihui Zhang
Gang Chen
H. V. Jagadish
Beng Chin Ooi
K. Tan
89
148
0
21 Jun 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
112
2,236
0
21 Jun 2019
Distributed Optimization for Over-Parameterized Learning
Chi Zhang
Qianxiao Li
80
5
0
14 Jun 2019
Associative Convolutional Layers
H. Omidvar
Vahideh Akhlaghi
M. Franceschetti
Rajesh K. Gupta
44
1
0
10 Jun 2019
Making Asynchronous Stochastic Gradient Descent Work for Transformers
Alham Fikri Aji
Kenneth Heafield
68
13
0
08 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
74
408
0
06 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
105
322
0
31 May 2019
On the Convergence of Memory-Based Distributed SGD
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
17
1
0
30 May 2019
Previous
1
2
3
...
10
11
12
13
Next