Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Yujun Lin
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
16 / 616 papers shown
Title
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
46
2,526
0
02 Jun 2018
Structurally Sparsified Backward Propagation for Faster Long Short-Term Memory Training
Maohua Zhu
Jason Clemons
Jeff Pool
Minsoo Rhu
S. Keckler
Yuan Xie
11
13
0
01 Jun 2018
Grow and Prune Compact, Fast, and Accurate LSTMs
Xiaoliang Dai
Hongxu Yin
N. Jha
VLM
SyDa
31
90
0
30 May 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
28
486
0
27 May 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
79
1,047
0
24 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
36
211
0
22 May 2018
Parameter Hub: a Rack-Scale Parameter Server for Distributed Deep Neural Network Training
Liang Luo
Jacob Nelson
Luis Ceze
Amar Phanishayee
Arvind Krishnamurthy
76
120
0
21 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
81
1,455
0
10 May 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
703
0
26 Feb 2018
SparCML: High-Performance Sparse Communication for Machine Learning
Cédric Renggli
Saleh Ashkboos
Mehdi Aghagolzadeh
Dan Alistarh
Torsten Hoefler
29
126
0
22 Feb 2018
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
Hyeontaek Lim
D. Andersen
M. Kaminsky
15
70
0
21 Feb 2018
On Scale-out Deep Learning Training for Cloud and HPC
Srinivas Sridharan
K. Vaidyanathan
Dhiraj D. Kalamkar
Dipankar Das
Mikhail E. Smorkalov
...
Dheevatsa Mudigere
Naveen Mellempudi
Sasikanth Avancha
Bharat Kaul
Pradeep Dubey
BDL
26
30
0
24 Jan 2018
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
39
1,280
0
20 Dec 2017
Differentially Private Distributed Learning for Language Modeling Tasks
Vadim Popov
Mikhail Kudinov
Irina Piontkovskaya
Petr Vytovtov
A. Nevidomsky
FedML
38
3
0
20 Dec 2017
Training Simplification and Model Simplification for Deep Learning: A Minimal Effort Back Propagation Method
Xu Sun
Xuancheng Ren
Shuming Ma
Bingzhen Wei
Wei Li
Jingjing Xu
Houfeng Wang
Yi Zhang
23
25
0
17 Nov 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
Previous
1
2
3
...
11
12
13