Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
v1
v2
v3 (latest)
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv (abs)
PDF
HTML
Github (222★)
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
50 / 625 papers shown
Title
Global Momentum Compression for Sparse Communication in Distributed Learning
Chang-Wei Shi
Shen-Yi Zhao
Yin-Peng Xie
Hao Gao
Wu-Jun Li
80
1
0
30 May 2019
Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data
Shicong Cen
Huishuai Zhang
Yuejie Chi
Wei-neng Chen
Tie-Yan Liu
FedML
108
27
0
29 May 2019
Accelerated Sparsified SGD with Error Feedback
Tomoya Murata
Taiji Suzuki
53
2
0
29 May 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
93
151
0
27 May 2019
Incremental Learning Using a Grow-and-Prune Paradigm with Efficient Neural Networks
Xiaoliang Dai
Hongxu Yin
N. Jha
83
32
0
27 May 2019
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback
Shuai Zheng
Ziyue Huang
James T. Kwok
56
115
0
27 May 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
111
1,450
0
24 May 2019
Accelerating DNN Training in Wireless Federated Edge Learning Systems
Jinke Ren
Guanding Yu
Guangyao Ding
FedML
85
175
0
23 May 2019
Decentralized Learning of Generative Adversarial Networks from Non-iid Data
Ryo Yonetani
Tomohiro Takahashi
Atsushi Hashimoto
Yoshitaka Ushiku
92
24
0
23 May 2019
Priority-based Parameter Propagation for Distributed DNN Training
Anand Jayarajan
Jinliang Wei
Garth A. Gibson
Alexandra Fedorova
Gennady Pekhimenko
AI4CE
62
182
0
10 May 2019
Realizing Petabyte Scale Acoustic Modeling
S. Parthasarathi
Nitin Sivakrishnan
Pranav Ladkat
N. Strom
60
11
0
24 Apr 2019
Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools
R. Mayer
Hans-Arno Jacobsen
GNN
81
193
0
27 Mar 2019
Communication-efficient distributed SGD with Sketching
Nikita Ivkin
D. Rothchild
Enayat Ullah
Vladimir Braverman
Ion Stoica
R. Arora
FedML
93
201
0
12 Mar 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
79
1,367
0
07 Mar 2019
Speeding up Deep Learning with Transient Servers
Shijian Li
R. Walls
Lijie Xu
Tian Guo
54
12
0
28 Feb 2019
Gradient Scheduling with Global Momentum for Non-IID Data Distributed Asynchronous Training
Chengjie Li
Ruixuan Li
Yining Qi
Yuhua Li
Pan Zhou
Song Guo
Keqin Li
88
16
0
21 Feb 2019
Optimizing Network Performance for Distributed DNN Training on GPU Clusters: ImageNet/AlexNet Training in 1.5 Minutes
Peng Sun
Wansen Feng
Ruobing Han
Shengen Yan
Yonggang Wen
AI4CE
100
70
0
19 Feb 2019
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
95
2,352
0
13 Feb 2019
Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
87
510
0
01 Feb 2019
Hardware-Guided Symbiotic Training for Compact, Accurate, yet Execution-Efficient LSTM
Hongxu Yin
Guoyang Chen
Yingmin Li
Shuai Che
Weifeng Zhang
N. Jha
58
10
0
30 Jan 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
113
503
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
66
13
0
27 Jan 2019
Information-Theoretic Understanding of Population Risk Improvement with Model Compression
Yuheng Bu
Weihao Gao
Shaofeng Zou
Venugopal V. Veeravalli
MedIm
48
15
0
27 Jan 2019
A Distributed Synchronous SGD Algorithm with Global Top-
k
k
k
Sparsification for Low Bandwidth Networks
Shaoshuai Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
79
137
0
14 Jan 2019
Quantized Epoch-SGD for Communication-Efficient Distributed Learning
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
FedML
56
3
0
10 Jan 2019
Bandwidth Reduction using Importance Weighted Pruning on Ring AllReduce
Zehua Cheng
Zhenghua Xu
50
8
0
06 Jan 2019
Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air
Mohammad Mohammadi Amiri
Deniz Gunduz
87
53
0
03 Jan 2019
Federated Learning via Over-the-Air Computation
Kai Yang
Tao Jiang
Yuanming Shi
Z. Ding
FedML
102
882
0
31 Dec 2018
Broadband Analog Aggregation for Low-Latency Federated Edge Learning (Extended Version)
Guangxu Zhu
Yong Wang
Kaibin Huang
FedML
103
650
0
30 Dec 2018
Stanza: Layer Separation for Distributed Training in Deep Learning
Xiaorui Wu
Hongao Xu
Bo Li
Y. Xiong
MoE
54
9
0
27 Dec 2018
Distributed Learning with Sparse Communications by Identification
Dmitry Grishchenko
F. Iutzeler
J. Malick
Massih-Reza Amini
62
19
0
10 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
77
100
0
08 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
125
713
0
03 Dec 2018
MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms
Shaoshuai Shi
Xiaowen Chu
Bo Li
FedML
91
90
0
27 Nov 2018
Hydra: A Peer to Peer Distributed Training & Data Collection Framework
Vaibhav Mathur
K. Chahal
OffRL
35
2
0
24 Nov 2018
SuperNeurons: FFT-based Gradient Sparsification in the Distributed Training of Deep Neural Networks
Linnan Wang
Wei Wu
Junyu Zhang
Hang Liu
G. Bosilca
Maurice Herlihy
Rodrigo Fonseca
GNN
47
5
0
21 Nov 2018
Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training
Youjie Li
Hang Qiu
Songze Li
A. Avestimehr
Nam Sung Kim
Alex Schwing
FedML
118
104
0
08 Nov 2018
GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training
Timo C. Wunderlich
Zhifeng Lin
S. A. Aamir
Andreas Grübl
Youjie Li
David Stöckel
Alex Schwing
M. Annavaram
A. Avestimehr
MQ
47
64
0
08 Nov 2018
A Hitchhiker's Guide On Distributed Training of Deep Neural Networks
K. Chahal
Manraj Singh Grover
Kuntal Dey
3DH
OOD
88
54
0
28 Oct 2018
Batch Normalization Sampling
Zhaodong Chen
Lei Deng
Guoqi Li
Jiawei Sun
Xing Hu
Xin Ma
Yuan Xie
41
0
0
25 Oct 2018
Computation Scheduling for Distributed Machine Learning with Straggling Workers
Mohammad Mohammadi Amiri
Deniz Gunduz
FedML
82
3
0
23 Oct 2018
Collaborative Deep Learning Across Multiple Data Centers
Kele Xu
Haibo Mi
Dawei Feng
Huaimin Wang
Chuan Chen
Zibin Zheng
Xu Lan
FedML
344
18
0
16 Oct 2018
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
Jeremy Bernstein
Jiawei Zhao
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
68
47
0
11 Oct 2018
Dynamic Sparse Graph for Efficient Deep Learning
Liu Liu
Lei Deng
Xing Hu
Maohua Zhu
Guoqi Li
Yufei Ding
Yuan Xie
GNN
90
42
0
01 Oct 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
181
493
0
27 Sep 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
106
753
0
20 Sep 2018
Efficient and Robust Parallel DNN Training through Model Parallelism on Multi-GPU Platform
Chi-Chung Chen
Chia-Lin Yang
Hsiang-Yun Cheng
94
101
0
08 Sep 2018
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Guangxu Zhu
Dongzhu Liu
Yuqing Du
Changsheng You
Jun Zhang
Kaibin Huang
85
507
0
02 Sep 2018
Accelerating Asynchronous Stochastic Gradient Descent for Neural Machine Translation
Nikolay Bogoychev
Marcin Junczys-Dowmunt
Kenneth Heafield
Alham Fikri Aji
ODL
49
17
0
27 Aug 2018
Sparsity in Deep Neural Networks - An Empirical Investigation with TensorQuant
D. Loroch
Franz-Josef Pfreundt
Norbert Wehn
J. Keuper
46
5
0
27 Aug 2018
Previous
1
2
3
...
11
12
13
Next