Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
50 / 616 papers shown
Title
Federated Graph Machine Learning: A Survey of Concepts, Techniques, and Applications
Xingbo Fu
Binchi Zhang
Yushun Dong
Chen Chen
Jundong Li
FedML
OOD
AI4CE
42
35
0
24 Jul 2022
Training Transformers Together
Alexander Borzunov
Max Ryabinin
Tim Dettmers
Quentin Lhoest
Lucile Saulnier
Michael Diskin
Yacine Jernite
Thomas Wolf
ViT
31
8
0
07 Jul 2022
Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach
Naifu Zhang
M. Tao
Jia Wang
Fan Xu
19
13
0
28 Jun 2022
Efficient Adaptive Federated Optimization of Federated Learning for IoT
Zunming Chen
Hongyan Cui
Ensen Wu
Yu Xi
27
0
0
23 Jun 2022
sqSGD: Locally Private and Communication Efficient Federated Learning
Yan Feng
Tao Xiong
Ruofan Wu
Lingjuan Lv
Leilei Shi
FedML
31
2
0
21 Jun 2022
Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data
Timothy Castiglia
Anirban Das
Shiqiang Wang
S. Patterson
FedML
27
48
0
16 Jun 2022
Matching Pursuit Based Scheduling for Over-the-Air Federated Learning
Ali Bereyhi
Adela Vagollari
S. Asaad
R. Muller
W. Gerstacker
H. Vincent Poor
28
6
0
14 Jun 2022
Communication-Efficient Federated Learning over MIMO Multiple Access Channels
Yo-Seb Jeon
Mohammad Mohammadi Amiri
Namyoon Lee
19
18
0
12 Jun 2022
Communication-Efficient Robust Federated Learning with Noisy Labels
Junyi Li
Jian Pei
Heng Huang
FedML
34
18
0
11 Jun 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
30
25
0
08 Jun 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
45
31
0
30 May 2022
ByteComp: Revisiting Gradient Compression in Distributed Training
Zhuang Wang
Yanghua Peng
Yibo Zhu
T. Ng
18
2
0
28 May 2022
Stochastic Gradient Methods with Compressed Communication for Decentralized Saddle Point Problems
Chhavi Sharma
Vishnu Narayanan
P. Balamurugan
16
2
0
28 May 2022
QUIC-FL: Quick Unbiased Compression for Federated Learning
Ran Ben-Basat
S. Vargaftik
Amit Portnoy
Gil Einziger
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
72
13
0
26 May 2022
BlockDFL: A Blockchain-based Fully Decentralized Peer-to-Peer Federated Learning Framework
Zhen Qin
Xueqiang Yan
Mengchu Zhou
Shuiguang Deng
25
12
0
21 May 2022
Federated learning: Applications, challenges and future directions
Subrato Bharati
Hossain Mondal
Prajoy Podder
V. B. Surya Prasath
FedML
39
53
0
18 May 2022
On Distributed Adaptive Optimization with Gradient Compression
Xiaoyun Li
Belhal Karimi
Ping Li
20
25
0
11 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
29
10
0
08 May 2022
Over-the-Air Federated Multi-Task Learning via Model Sparsification and Turbo Compressed Sensing
Haoming Ma
Xiaojun Yuan
Z. Ding
Dian Fan
Jun Fang
15
1
0
08 May 2022
Training Mixed-Domain Translation Models via Federated Learning
Peyman Passban
Tanya Roosta
Rahul Gupta
Ankit R. Chadha
Clement Chung
FedML
AI4CE
29
18
0
03 May 2022
MiCS: Near-linear Scaling for Training Gigantic Model on Public Cloud
Zhen Zhang
Shuai Zheng
Yida Wang
Justin Chiu
George Karypis
Trishul Chilimbi
Mu Li
Xin Jin
21
39
0
30 Apr 2022
A review of Federated Learning in Intrusion Detection Systems for IoT
Aitor Belenguer
J. Navaridas
J. A. Pascual
28
15
0
26 Apr 2022
Enable Deep Learning on Mobile Devices: Methods, Systems, and Applications
Han Cai
Ji Lin
Chengyue Wu
Zhijian Liu
Haotian Tang
Hanrui Wang
Ligeng Zhu
Song Han
27
108
0
25 Apr 2022
FedVQCS: Federated Learning via Vector Quantized Compressed Sensing
Yong-Nam Oh
Yo-Seb Jeon
Mingzhe Chen
Walid Saad
FedML
33
11
0
16 Apr 2022
Adaptive Differential Filters for Fast and Communication-Efficient Federated Learning
Daniel Becking
H. Kirchhoffer
G. Tech
Paul Haase
Karsten Müller
H. Schwarz
Wojciech Samek
FedML
29
4
0
09 Apr 2022
Accelerating Federated Edge Learning via Topology Optimization
Shanfeng Huang
Zezhong Zhang
Shuai Wang
Rui-cang Wang
Kaibin Huang
FedML
25
13
0
01 Apr 2022
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Zhuohang Li
Jiaxin Zhang
Lu Liu
Jian-Dong Liu
FedML
38
114
0
29 Mar 2022
Addressing Client Drift in Federated Continual Learning with Adaptive Optimization
Yeshwanth Venkatesha
Youngeun Kim
Hyoungseob Park
Yuhang Li
Priyadarshini Panda
FedML
13
8
0
24 Mar 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
35
3
0
22 Mar 2022
Similarity-based Label Inference Attack against Training and Inference of Split Learning
Junlin Liu
Xinchen Lyu
Qimei Cui
Xiaofeng Tao
FedML
35
26
0
10 Mar 2022
Correlated quantization for distributed mean estimation and optimization
A. Suresh
Ziteng Sun
Jae Hun Ro
Felix X. Yu
33
12
0
09 Mar 2022
The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
Wei-Ning Chen
Christopher A. Choquette-Choo
Peter Kairouz
A. Suresh
FedML
42
63
0
07 Mar 2022
Differentially Private Federated Learning with Local Regularization and Sparsification
Anda Cheng
Peisong Wang
Xi Sheryl Zhang
Jian Cheng
FedML
28
71
0
07 Mar 2022
Linear Stochastic Bandits over a Bit-Constrained Channel
A. Mitra
Hamed Hassani
George J. Pappas
44
8
0
02 Mar 2022
DropIT: Dropping Intermediate Tensors for Memory-Efficient DNN Training
Joya Chen
Kai Xu
Yuhui Wang
Yifei Cheng
Angela Yao
19
7
0
28 Feb 2022
No One Left Behind: Inclusive Federated Learning over Heterogeneous Devices
Ruixuan Liu
Fangzhao Wu
Chuhan Wu
Yanlin Wang
Lingjuan Lyu
Hong Chen
Xing Xie
FedML
19
70
0
16 Feb 2022
OLIVE: Oblivious Federated Learning on Trusted Execution Environment against the risk of sparsification
Fumiyuki Kato
Yang Cao
Masatoshi Yoshikawa
FedML
29
5
0
15 Feb 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning
A. Mondal
Harpreet Virk
Debayan Gupta
42
15
0
06 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
31
15
0
05 Feb 2022
Improved Information Theoretic Generalization Bounds for Distributed and Federated Learning
L. P. Barnes
Alex Dytso
H. V. Poor
FedML
41
16
0
04 Feb 2022
3PC: Three Point Compressors for Communication-Efficient Distributed Training and a Better Theory for Lazy Aggregation
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
Elnur Gasanov
Zhize Li
Eduard A. Gorbunov
23
31
0
02 Feb 2022
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs
Weiyang Wang
Moein Khazraee
Zhizhen Zhong
M. Ghobadi
Zhihao Jia
Dheevatsa Mudigere
Ying Zhang
A. Kewitsch
39
85
0
01 Feb 2022
Faster Convergence of Local SGD for Over-Parameterized Models
Tiancheng Qin
S. Rasoul Etesami
César A. Uribe
FedML
38
6
0
30 Jan 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
37
213
0
20 Jan 2022
DEFER: Distributed Edge Inference for Deep Neural Networks
Arjun Parthasarathy
Bhaskar Krishnamachari
24
14
0
18 Jan 2022
Egeria: Efficient DNN Training with Knowledge-Guided Layer Freezing
Yiding Wang
D. Sun
Kai Chen
Fan Lai
Mosharaf Chowdhury
33
44
0
17 Jan 2022
Optimizing the Communication-Accuracy Trade-off in Federated Learning with Rate-Distortion Theory
Nicole Mitchell
Johannes Ballé
Zachary B. Charles
Jakub Konecný
FedML
19
21
0
07 Jan 2022
Automatic Configuration for Optimal Communication Scheduling in DNN Training
Yiqing Ma
Hao Wang
Yiming Zhang
Kai Chen
22
12
0
27 Dec 2021
Sparsified Secure Aggregation for Privacy-Preserving Federated Learning
Irem Ergun
Hasin Us Sami
Başak Güler
FedML
41
26
0
23 Dec 2021
FedLGA: Towards System-Heterogeneity of Federated Learning via Local Gradient Approximation
Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
FedML
33
25
0
22 Dec 2021
Previous
1
2
3
4
5
6
...
11
12
13
Next