Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
v1
v2
v3 (latest)
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv (abs)
PDF
HTML
Github (222★)
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
50 / 625 papers shown
Title
SparDL: Distributed Deep Learning Training with Efficient Sparse Communication
Minjun Zhao
Yichen Yin
Yuren Mao
Qing Liu
Lu Chen
Yunjun Gao
48
1
0
03 Apr 2023
AI-Generated Content (AIGC): A Survey
Jiayang Wu
Wensheng Gan
Zefeng Chen
Shicheng Wan
Hong Lin
3DV
92
133
0
26 Mar 2023
Delay-Aware Hierarchical Federated Learning
F. Lin
Seyyedali Hosseinalipour
Nicolò Michelusi
Christopher G. Brinton
FedML
94
12
0
22 Mar 2023
Efficient and Secure Federated Learning for Financial Applications
Tao Liu
Zhi Wang
Hui He
Wei Shi
Liangliang Lin
Wei Shi
Ran An
Chenhao Li
FedML
67
27
0
15 Mar 2023
Complement Sparsification: Low-Overhead Model Pruning for Federated Learning
Xiaopeng Jiang
Cristian Borcea
FedML
83
17
0
10 Mar 2023
Cloudless-Training: A Framework to Improve Efficiency of Geo-Distributed ML Training
W. Tan
Xiao Shi
Cunchi Lv
Xiaofang Zhao
FedML
58
1
0
09 Mar 2023
FedREP: A Byzantine-Robust, Communication-Efficient and Privacy-Preserving Framework for Federated Learning
Yi-Rui Yang
Kun Wang
Wulu Li
FedML
85
3
0
09 Mar 2023
Communication-efficient Federated Learning with Single-Step Synthetic Features Compressor for Faster Convergence
Yuhao Zhou
Mingjia Shi
Yuanxi Li
Qing Ye
Yanan Sun
Jiancheng Lv
49
4
0
27 Feb 2023
DeAR: Accelerating Distributed Deep Learning with Fine-Grained All-Reduce Pipelining
Lin Zhang
Shaoshuai Shi
Xiaowen Chu
Wei Wang
Yue Liu
Chengjian Liu
75
11
0
24 Feb 2023
Advancements in Federated Learning: Models, Methods, and Privacy
Hui Chen
Huandong Wang
Qingyue Long
Depeng Jin
Yong Li
FedML
105
16
0
22 Feb 2023
Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity
Richeng Jin
Xiaofan He
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
53
1
0
19 Feb 2023
Multimodal Federated Learning via Contrastive Representation Ensemble
Qiying Yu
Yang Liu
Yimu Wang
Ke Xu
Jingjing Liu
82
90
0
17 Feb 2023
THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic Compression
Minghao Li
Ran Ben-Basat
S. Vargaftik
Chon-In Lao
Ke Xu
Michael Mitzenmacher
Minlan Yu Harvard University
94
19
0
16 Feb 2023
Sparse-SignSGD with Majority Vote for Communication-Efficient Distributed Learning
Chanho Park
Namyoon Lee
FedML
54
4
0
15 Feb 2023
Expediting Distributed DNN Training with Device Topology-Aware Graph Deployment
Shiwei Zhang
Xiaodong Yi
Lansong Diao
Chuan Wu
Siyu Wang
W. Lin
GNN
39
5
0
13 Feb 2023
FedPass: Privacy-Preserving Vertical Federated Deep Learning with Adaptive Obfuscation
Hanlin Gu
Jiahuan Luo
Yan Kang
Lixin Fan
Qiang Yang
FedML
94
13
0
30 Jan 2023
SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient
Max Ryabinin
Tim Dettmers
Michael Diskin
Alexander Borzunov
MoE
111
38
0
27 Jan 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
74
28
0
24 Jan 2023
M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion
Yangyi Liu
Stefano Rini
Sadaf Salehkalaibar
Jun Chen
FedML
48
4
0
23 Jan 2023
ScaDLES: Scalable Deep Learning over Streaming data at the Edge
S. Tyagi
Martin Swany
52
6
0
21 Jan 2023
Does compressing activations help model parallel training?
S. Bian
Dacheng Li
Hongyi Wang
Eric P. Xing
Shivaram Venkataraman
72
9
0
06 Jan 2023
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning
A. Mitra
George J. Pappas
Hamed Hassani
76
12
0
03 Jan 2023
Mutual Information Regularization for Vertical Federated Learning
Tianyuan Zou
Yang Liu
Ya-Qin Zhang
AAML
FedML
68
6
0
01 Jan 2023
Deep Hierarchy Quantization Compression algorithm based on Dynamic Sampling
W. Jiang
Gang Liu
Xiaofeng Chen
Yipeng Zhou
FedML
28
0
0
30 Dec 2022
A Survey on Federated Recommendation Systems
Zehua Sun
Yonghui Xu
Yang Liu
Weiliang He
Lanju Kong
Fangzhao Wu
Yiheng Jiang
Li-zhen Cui
FedML
113
68
0
27 Dec 2022
Adaptive Control of Client Selection and Gradient Compression for Efficient Federated Learning
Zhida Jiang
Yang Xu
Hong-Ze Xu
Zhiyuan Wang
Chen Qian
54
9
0
19 Dec 2022
ResFed: Communication Efficient Federated Learning by Transmitting Deep Compressed Residuals
Rui Song
Liguo Zhou
Lingjuan Lyu
Andreas Festag
Alois Knoll
FedML
81
5
0
11 Dec 2022
Client Selection for Federated Bayesian Learning
Jiarong Yang
Yuan Liu
Rahif Kassab
FedML
66
12
0
11 Dec 2022
Scalable Graph Convolutional Network Training on Distributed-Memory Systems
G. Demirci
Aparajita Haldar
Hakan Ferhatosmanoglu
GNN
100
9
0
09 Dec 2022
Vertical Federated Learning: A Structured Literature Review
Afsana Khan
M. T. Thij
A. Wilbik
FedML
112
10
0
01 Dec 2022
HashVFL: Defending Against Data Reconstruction Attacks in Vertical Federated Learning
Pengyu Qiu
Xuhong Zhang
S. Ji
Chong Fu
Xing Yang
Ting Wang
FedML
AAML
128
13
0
01 Dec 2022
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
75
5
0
25 Nov 2022
Vertical Federated Learning: Concepts, Advances and Challenges
Yang Liu
Yan Kang
Tianyuan Zou
Yanhong Pu
Yuanqin He
Xiaozhou Ye
Ye Ouyang
Yaqin Zhang
Qian Yang
FedML
187
176
0
23 Nov 2022
FedDCT: Federated Learning of Large Convolutional Neural Networks on Resource Constrained Devices using Divide and Collaborative Training
Quan Nguyen
Hieu H. Pham
Kok-Seng Wong
Phi Le Nguyen
Truong Thao Nguyen
Minh N. Do
FedML
100
7
0
20 Nov 2022
Improving Federated Learning Communication Efficiency with Global Momentum Fusion for Gradient Compression Schemes
Chun-Chih Kuo
Ted T. Kuo
Chia-Yu Lin
FedML
120
1
0
17 Nov 2022
Optimal Privacy Preserving for Federated Learning in Mobile Edge Computing
Hai M. Nguyen
N. Chu
Diep N. Nguyen
D. Hoang
Van-Dinh Nguyen
Minh Hoàng Hà
E. Dutkiewicz
Marwan Krunz
FedML
61
1
0
14 Nov 2022
Knowledge Distillation for Federated Learning: a Practical Guide
Alessio Mora
Irene Tenison
Paolo Bellavista
Irina Rish
FedML
66
31
0
09 Nov 2022
QuantPipe: Applying Adaptive Post-Training Quantization for Distributed Transformer Pipelines in Dynamic Edge Environments
Hong Wang
Connor Imes
Souvik Kundu
Peter A. Beerel
S. Crago
J. Walters
MQ
59
7
0
08 Nov 2022
HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics in Industrial Metaverse
Shenglai Zeng
Zonghang Li
Hongfang Yu
Zhihao Zhang
Long Luo
Yue Liu
Dusit Niyato
105
44
0
07 Nov 2022
On the Interaction Between Differential Privacy and Gradient Compression in Deep Learning
Jimmy J. Lin
37
0
0
01 Nov 2022
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
116
16
0
31 Oct 2022
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Mohammadreza Alimohammadi
I. Markov
Elias Frantar
Dan Alistarh
80
5
0
31 Oct 2022
FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings
Junyi Li
Heng-Chiao Huang
FedML
48
6
0
25 Oct 2022
Federated Learning and Meta Learning: Approaches, Applications, and Directions
Xiaonan Liu
Yansha Deng
Arumugam Nallanathan
M. Bennis
116
38
0
24 Oct 2022
Sparse Random Networks for Communication-Efficient Federated Learning
Berivan Isik
Francesco Pase
Deniz Gunduz
Tsachy Weissman
M. Zorzi
FedML
120
53
0
30 Sep 2022
Empirical Analysis on Top-k Gradient Sparsification for Distributed Deep Learning in a Supercomputing Environment
Daegun Yoon
Sangyoon Oh
85
0
0
18 Sep 2022
Concealing Sensitive Samples against Gradient Leakage in Federated Learning
Jing Wu
Munawar Hayat
Min Zhou
Mehrtash Harandi
FedML
54
11
0
13 Sep 2022
Convergence of Batch Updating Methods with Approximate Gradients and/or Noisy Measurements: Theory and Computational Results
Tadipatri Uday
M. Vidyasagar
37
0
0
12 Sep 2022
A simplified convergence theory for Byzantine resilient stochastic gradient descent
Lindon Roberts
E. Smyth
80
3
0
25 Aug 2022
Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
Rui Song
Dai Liu
Da Chen
Andreas Festag
Carsten Trinitis
Martin Schulz
Alois C. Knoll
DD
FedML
119
66
0
24 Aug 2022
Previous
1
2
3
4
5
...
11
12
13
Next