ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00851
  4. Cited By
Provable defenses against adversarial examples via the convex outer
  adversarial polytope

Provable defenses against adversarial examples via the convex outer adversarial polytope

2 November 2017
Eric Wong
J. Zico Kolter
    AAML
ArXivPDFHTML

Papers citing "Provable defenses against adversarial examples via the convex outer adversarial polytope"

50 / 382 papers shown
Title
Securing Connected & Autonomous Vehicles: Challenges Posed by
  Adversarial Machine Learning and The Way Forward
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
21
187
0
29 May 2019
Controlling Neural Level Sets
Controlling Neural Level Sets
Matan Atzmon
Niv Haim
Lior Yariv
Ofer Israelov
Haggai Maron
Y. Lipman
AI4CE
22
118
0
28 May 2019
Adversarially Robust Learning Could Leverage Computational Hardness
Adversarially Robust Learning Could Leverage Computational Hardness
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
20
24
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Privacy Risks of Securing Machine Learning Models against Adversarial
  Examples
Privacy Risks of Securing Machine Learning Models against Adversarial Examples
Liwei Song
Reza Shokri
Prateek Mittal
SILM
MIACV
AAML
6
235
0
24 May 2019
Robust Attribution Regularization
Robust Attribution Regularization
Jiefeng Chen
Xi Wu
Vaibhav Rastogi
Yingyu Liang
S. Jha
OOD
9
83
0
23 May 2019
Learning to Confuse: Generating Training Time Adversarial Data with
  Auto-Encoder
Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder
Ji Feng
Qi-Zhi Cai
Zhi-Hua Zhou
AAML
19
104
0
22 May 2019
Percival: Making In-Browser Perceptual Ad Blocking Practical With Deep
  Learning
Percival: Making In-Browser Perceptual Ad Blocking Practical With Deep Learning
Z. Din
P. Tigas
Samuel T. King
B. Livshits
VLM
39
29
0
17 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
375
0
30 Apr 2019
Adversarial Training for Free!
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,227
0
29 Apr 2019
Adversarial Learning in Statistical Classification: A Comprehensive
  Review of Defenses Against Attacks
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
19
35
0
12 Apr 2019
On Training Robust PDF Malware Classifiers
On Training Robust PDF Malware Classifiers
Yizheng Chen
Shiqi Wang
Dongdong She
Suman Jana
AAML
50
68
0
06 Apr 2019
Evading Defenses to Transferable Adversarial Examples by
  Translation-Invariant Attacks
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
49
829
0
05 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural
  Networks
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Scaling up the randomized gradient-free adversarial attack reveals
  overestimation of robustness using established attacks
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
20
30
0
27 Mar 2019
Defending against Whitebox Adversarial Attacks via Randomized
  Discretization
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
32
75
0
25 Mar 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial
  Robustness
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
22
46
0
25 Mar 2019
The LogBarrier adversarial attack: making effective use of decision
  boundary information
The LogBarrier adversarial attack: making effective use of decision boundary information
Chris Finlay
Aram-Alexandre Pooladian
Adam M. Oberman
AAML
26
25
0
25 Mar 2019
Scalable Differential Privacy with Certified Robustness in Adversarial
  Learning
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
27
14
0
23 Mar 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the
  Union of Polytopes
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
21
57
0
20 Mar 2019
Algorithms for Verifying Deep Neural Networks
Algorithms for Verifying Deep Neural Networks
Changliu Liu
Tomer Arnon
Christopher Lazarus
Christopher A. Strong
Clark W. Barrett
Mykel J. Kochenderfer
AAML
36
393
0
15 Mar 2019
Semantics Preserving Adversarial Learning
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAML
GAN
29
2
0
10 Mar 2019
Detecting Overfitting via Adversarial Examples
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
26
45
0
06 Mar 2019
A Fundamental Performance Limitation for Adversarial Classification
A Fundamental Performance Limitation for Adversarial Classification
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
AAML
33
8
0
04 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial
  Perturbations
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Robust Decision Trees Against Adversarial Examples
Robust Decision Trees Against Adversarial Examples
Hongge Chen
Huan Zhang
Duane S. Boning
Cho-Jui Hsieh
AAML
20
116
0
27 Feb 2019
Architecting Dependable Learning-enabled Autonomous Systems: A Survey
Architecting Dependable Learning-enabled Autonomous Systems: A Survey
Chih-Hong Cheng
Dhiraj Gulati
Rongjie Yan
27
4
0
27 Feb 2019
Disentangled Deep Autoencoding Regularization for Robust Image
  Classification
Disentangled Deep Autoencoding Regularization for Robust Image Classification
Zhenyu Duan
Martin Renqiang Min
Erran L. Li
Mingbo Cai
Yi Tian Xu
Bingbing Ni
13
2
0
27 Feb 2019
Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher
  Precision and Faster Verification
Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification
Jianlin Li
Pengfei Yang
Jiangchao Liu
Liqian Chen
Xiaowei Huang
Lijun Zhang
AAML
24
80
0
26 Feb 2019
Verification of Non-Linear Specifications for Neural Networks
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
14
43
0
25 Feb 2019
A Convex Relaxation Barrier to Tight Robustness Verification of Neural
  Networks
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
AAML
21
263
0
23 Feb 2019
On the Sensitivity of Adversarial Robustness to Input Data Distributions
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
26
59
0
22 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
33
210
0
21 Feb 2019
Fast Neural Network Verification via Shadow Prices
Fast Neural Network Verification via Shadow Prices
Vicencc Rubies-Royo
Roberto Calandra
D. Stipanović
Claire Tomlin
AAML
40
41
0
19 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
19
1,995
0
08 Feb 2019
A New Family of Neural Networks Provably Resistant to Adversarial
  Attacks
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
27
2
0
01 Feb 2019
On the (In)fidelity and Sensitivity for Explanations
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
39
449
0
27 Jan 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
22
144
0
15 Jan 2019
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic
  Approach
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
Tsui-Wei Weng
Pin-Yu Chen
Lam M. Nguyen
M. Squillante
Ivan Oseledets
Luca Daniel
AAML
21
30
0
18 Dec 2018
Why ReLU networks yield high-confidence predictions far away from the
  training data and how to mitigate the problem
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
55
553
0
13 Dec 2018
On the Security of Randomized Defenses Against Adversarial Samples
On the Security of Randomized Defenses Against Adversarial Samples
K. Sharad
G. Marson
H. Truong
Ghassan O. Karame
AAML
25
1
0
11 Dec 2018
A randomized gradient-free attack on ReLU networks
A randomized gradient-free attack on ReLU networks
Francesco Croce
Matthias Hein
AAML
37
21
0
28 Nov 2018
Strong mixed-integer programming formulations for trained neural
  networks
Strong mixed-integer programming formulations for trained neural networks
Ross Anderson
Joey Huchette
Christian Tjandraatmadja
J. Vielma
19
251
0
20 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
15
68
0
13 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
Mohsen Guizani
AAML
21
23
0
06 Nov 2018
Efficient Neural Network Robustness Certification with General
  Activation Functions
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
11
747
0
02 Nov 2018
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Pang Wei Koh
Jacob Steinhardt
Percy Liang
6
240
0
02 Nov 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
27
82
0
29 Oct 2018
Provable Robustness of ReLU networks via Maximization of Linear Regions
Provable Robustness of ReLU networks via Maximization of Linear Regions
Francesco Croce
Maksym Andriushchenko
Matthias Hein
26
166
0
17 Oct 2018
Previous
12345678
Next