ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08329
13
30

PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach

18 December 2018
Tsui-Wei Weng
Pin-Yu Chen
Lam M. Nguyen
M. Squillante
Ivan Oseledets
Luca Daniel
    AAML
ArXivPDFHTML
Abstract

With deep neural networks providing state-of-the-art machine learning models for numerous machine learning tasks, quantifying the robustness of these models has become an important area of research. However, most of the research literature merely focuses on the \textit{worst-case} setting where the input of the neural network is perturbed with noises that are constrained within an ℓp\ell_pℓp​ ball; and several algorithms have been proposed to compute certified lower bounds of minimum adversarial distortion based on such worst-case analysis. In this paper, we address these limitations and extend the approach to a \textit{probabilistic} setting where the additive noises can follow a given distributional characterization. We propose a novel probabilistic framework PROVEN to PRObabilistically VErify Neural networks with statistical guarantees -- i.e., PROVEN certifies the probability that the classifier's top-1 prediction cannot be altered under any constrained ℓp\ell_pℓp​ norm perturbation to a given input. Importantly, we show that it is possible to derive closed-form probabilistic certificates based on current state-of-the-art neural network robustness verification frameworks. Hence, the probabilistic certificates provided by PROVEN come naturally and with almost no overhead when obtaining the worst-case certified lower bounds from existing methods such as Fast-Lin, CROWN and CNN-Cert. Experiments on small and large MNIST and CIFAR neural network models demonstrate our probabilistic approach can achieve up to around 75%75\%75% improvement in the robustness certification with at least a 99.99%99.99\%99.99% confidence compared with the worst-case robustness certificate delivered by CROWN.

View on arXiv
Comments on this paper