Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00851
Cited By
Provable defenses against adversarial examples via the convex outer adversarial polytope
2 November 2017
Eric Wong
J. Zico Kolter
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provable defenses against adversarial examples via the convex outer adversarial polytope"
50 / 386 papers shown
Title
Quantum noise protects quantum classifiers against adversaries
Yuxuan Du
Min-hsiu Hsieh
Tongliang Liu
Dacheng Tao
Nana Liu
AAML
22
110
0
20 Mar 2020
Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations
Huan Zhang
Hongge Chen
Chaowei Xiao
Bo-wen Li
Mingyan D. Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
44
261
0
19 Mar 2020
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks
Y. Tashiro
Yang Song
Stefano Ermon
AAML
14
13
0
15 Mar 2020
Topological Effects on Attacks Against Vertex Classification
B. A. Miller
Mustafa Çamurcu
Alexander J. Gomez
Kevin S. Chan
Tina Eliassi-Rad
AAML
19
2
0
12 Mar 2020
Exploiting Verified Neural Networks via Floating Point Numerical Error
Kai Jia
Martin Rinard
AAML
37
34
0
06 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
787
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
397
0
26 Feb 2020
Lagrangian Decomposition for Neural Network Verification
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip Torr
M. P. Kumar
19
50
0
24 Feb 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
24
78
0
24 Feb 2020
Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework
Dinghuai Zhang
Mao Ye
Chengyue Gong
Zhanxing Zhu
Qiang Liu
AAML
24
62
0
21 Feb 2020
Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks
Tsubasa Takahashi
GNN
AAML
19
37
0
19 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
30
15
0
18 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
29
51
0
16 Feb 2020
Robustness Verification for Transformers
Zhouxing Shi
Huan Zhang
Kai-Wei Chang
Minlie Huang
Cho-Jui Hsieh
AAML
24
105
0
16 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
Adversarial Robustness for Code
Pavol Bielik
Martin Vechev
AAML
22
89
0
11 Feb 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
36
3
0
10 Feb 2020
Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness
Aounon Kumar
Alexander Levine
Tom Goldstein
S. Feizi
15
94
0
08 Feb 2020
Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks
Oliver Willers
Sebastian Sudholt
Shervin Raafatnia
Stephanie Abrecht
28
80
0
22 Jan 2020
GhostImage: Remote Perception Attacks against Camera-based Image Classification Systems
Yanmao Man
Ming Li
Ryan M. Gerdes
AAML
22
8
0
21 Jan 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
99
1,159
0
12 Jan 2020
ReluDiff: Differential Verification of Deep Neural Networks
Brandon Paulsen
Jingbo Wang
Chao Wang
27
53
0
10 Jan 2020
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai
Chen Dan
Di He
Huan Zhang
Boqing Gong
Pradeep Ravikumar
Cho-Jui Hsieh
Liwei Wang
OOD
AAML
21
177
0
08 Jan 2020
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
24
56
0
01 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
31
36
0
26 Dec 2019
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
31
66
0
19 Dec 2019
Robustness Certificates for Sparse Adversarial Attacks by Randomized Ablation
Alexander Levine
S. Feizi
AAML
34
104
0
21 Nov 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
37
13
0
20 Nov 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
30
6
0
20 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
21
104
0
13 Nov 2019
Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
18
142
0
06 Nov 2019
Counterexample-Guided Synthesis of Perception Models and Control
Shromona Ghosh
Yash Vardhan Pant
H. Ravanbakhsh
S. Seshia
35
14
0
04 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Probabilistic Verification and Reachability Analysis of Neural Networks via Semidefinite Programming
Mahyar Fazlyab
M. Morari
George J. Pappas
AAML
35
41
0
09 Oct 2019
Adversarial Examples for Cost-Sensitive Classifiers
Mahdi Akbari Zarkesh
A. Lohn
Ali Movaghar
SILM
AAML
24
3
0
04 Oct 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
92
0
29 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
33
139
0
26 Sep 2019
Defending Against Physically Realizable Attacks on Image Classification
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
25
125
0
20 Sep 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
Adversarial shape perturbations on 3D point clouds
Daniel Liu
Ronald Yu
Hao Su
3DPC
33
12
0
16 Aug 2019
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Xuankang Lin
He Zhu
R. Samanta
Suresh Jagannathan
AAML
27
28
0
17 Jul 2019
Accurate, reliable and fast robustness evaluation
Wieland Brendel
Jonas Rauber
Matthias Kümmerer
Ivan Ustyuzhaninov
Matthias Bethge
AAML
OOD
13
113
0
01 Jul 2019
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Daniel Zügner
Stephan Günnemann
OffRL
39
162
0
28 Jun 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
28
42
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
21
104
0
25 Jun 2019
Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective
Lu Wang
Xuanqing Liu
Jinfeng Yi
Zhi-Hua Zhou
Cho-Jui Hsieh
AAML
28
22
0
10 Jun 2019
Robustness Verification of Tree-based Models
Hongge Chen
Huan Zhang
Si Si
Yang Li
Duane S. Boning
Cho-Jui Hsieh
AAML
17
76
0
10 Jun 2019
Previous
1
2
3
4
5
6
7
8
Next