ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00851
  4. Cited By
Provable defenses against adversarial examples via the convex outer
  adversarial polytope

Provable defenses against adversarial examples via the convex outer adversarial polytope

2 November 2017
Eric Wong
J. Zico Kolter
    AAML
ArXivPDFHTML

Papers citing "Provable defenses against adversarial examples via the convex outer adversarial polytope"

50 / 380 papers shown
Title
The Second International Verification of Neural Networks Competition
  (VNN-COMP 2021): Summary and Results
The Second International Verification of Neural Networks Competition (VNN-COMP 2021): Summary and Results
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
25
112
0
31 Aug 2021
PatchCleanser: Certifiably Robust Defense against Adversarial Patches
  for Any Image Classifier
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
Chong Xiang
Saeed Mahloujifar
Prateek Mittal
VLM
AAML
24
73
0
20 Aug 2021
Neural Architecture Dilation for Adversarial Robustness
Neural Architecture Dilation for Adversarial Robustness
Yanxi Li
Zhaohui Yang
Yunhe Wang
Chang Xu
AAML
38
23
0
16 Aug 2021
Reachability Analysis of Neural Feedback Loops
Reachability Analysis of Neural Feedback Loops
M. Everett
Golnaz Habibi
Chuangchuang Sun
Jonathan P. How
19
53
0
09 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
31
236
0
01 Aug 2021
Neural Network Branch-and-Bound for Neural Network Verification
Neural Network Branch-and-Bound for Neural Network Verification
Florian Jaeckle
Jingyue Lu
M. P. Kumar
18
8
0
27 Jul 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
30
65
0
24 Jul 2021
On the Certified Robustness for Ensemble Models and Beyond
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
29
48
0
22 Jul 2021
Built-in Elastic Transformations for Improved Robustness
Built-in Elastic Transformations for Improved Robustness
Sadaf Gulshad
Ivan Sosnovik
A. Smeulders
AAML
22
1
0
20 Jul 2021
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
Sophie Gruenbacher
Mathias Lechner
Ramin Hasani
Daniela Rus
T. Henzinger
S. Smolka
Radu Grosu
26
17
0
18 Jul 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
196
0
12 Jul 2021
Provable Lipschitz Certification for Generative Models
Provable Lipschitz Certification for Generative Models
Matt Jordan
A. Dimakis
22
14
0
06 Jul 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic
  Processors and Synthetic Gradients
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
24
4
0
06 Jul 2021
Scalable Certified Segmentation via Randomized Smoothing
Scalable Certified Segmentation via Randomized Smoothing
Marc Fischer
Maximilian Baader
Martin Vechev
18
38
0
01 Jul 2021
Certified Robustness via Randomized Smoothing over Multiplicative
  Parameters of Input Transformations
Certified Robustness via Randomized Smoothing over Multiplicative Parameters of Input Transformations
Nikita Muravev
Aleksandr Petiushko
AAML
18
7
0
28 Jun 2021
Policy Smoothing for Provably Robust Reinforcement Learning
Policy Smoothing for Provably Robust Reinforcement Learning
Aounon Kumar
Alexander Levine
S. Feizi
AAML
20
56
0
21 Jun 2021
Adversarial Visual Robustness by Causal Intervention
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
27
21
0
17 Jun 2021
Localized Uncertainty Attacks
Localized Uncertainty Attacks
Ousmane Amadou Dia
Theofanis Karaletsos
C. Hazirbas
Cristian Canton Ferrer
I. Kabul
E. Meijer
AAML
24
2
0
17 Jun 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator
  Splitting
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
Adversarial Robustness via Fisher-Rao Regularization
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
28
23
0
12 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of
  Noisy Labels
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
DNNV: A Framework for Deep Neural Network Verification
DNNV: A Framework for Deep Neural Network Verification
David Shriver
Sebastian G. Elbaum
Matthew B. Dwyer
21
31
0
26 May 2021
Practical Convex Formulation of Robust One-hidden-layer Neural Network
  Training
Practical Convex Formulation of Robust One-hidden-layer Neural Network Training
Yatong Bai
Tanmay Gautam
Yujie Gai
Somayeh Sojoudi
AAML
27
3
0
25 May 2021
Decentralized Inference with Graph Neural Networks in Wireless
  Communication Systems
Decentralized Inference with Graph Neural Networks in Wireless Communication Systems
Mengyuan Lee
Guanding Yu
H. Dai
GNN
42
40
0
19 Apr 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
  DNN Accelerators
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
24
18
0
16 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
36
65
0
09 Apr 2021
A Review of Formal Methods applied to Machine Learning
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
39
55
0
06 Apr 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Adversarial Training is Not Ready for Robot Learning
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
38
34
0
15 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable
  Adversarial Robustness
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
27
6
0
01 Mar 2021
Towards Robust and Reliable Algorithmic Recourse
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
25
108
0
26 Feb 2021
Adversarial Robustness with Non-uniform Perturbations
Adversarial Robustness with Non-uniform Perturbations
Ece Naz Erdemir
Jeffrey Bickford
Luca Melis
Sergul Aydore
AAML
24
26
0
24 Feb 2021
Model-Based Domain Generalization
Model-Based Domain Generalization
Alexander Robey
George J. Pappas
Hamed Hassani
OOD
45
129
0
23 Feb 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic
  Meta-Learning
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
21
47
0
20 Feb 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
28
7
0
16 Feb 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A
  Survey for Machine Learning Security to Securing Machine Learning for CPS
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
36
133
0
14 Feb 2021
On the Paradox of Certified Training
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
28
13
0
12 Feb 2021
Fast Training of Provably Robust Neural Networks by SingleProp
Fast Training of Provably Robust Neural Networks by SingleProp
Akhilan Boopathy
Tsui-Wei Weng
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Luca Daniel
AAML
11
7
0
01 Feb 2021
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
26
13
0
28 Jan 2021
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson
Ziye Ma
Jingqi Li
Somayeh Sojoudi
58
1
0
22 Jan 2021
Robust Reinforcement Learning on State Observations with Learned Optimal
  Adversary
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
Huan Zhang
Hongge Chen
Duane S. Boning
Cho-Jui Hsieh
67
163
0
21 Jan 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
20
18
0
15 Jan 2021
Achieving Adversarial Robustness Requires An Active Teacher
Achieving Adversarial Robustness Requires An Active Teacher
Chao Ma
Lexing Ying
27
1
0
14 Dec 2020
DSRNA: Differentiable Search of Robust Neural Architectures
DSRNA: Differentiable Search of Robust Neural Architectures
Ramtin Hosseini
Xingyi Yang
P. Xie
OOD
AAML
29
50
0
11 Dec 2020
Data-Dependent Randomized Smoothing
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip Torr
Guohao Li
UQCV
28
34
0
08 Dec 2020
Interpretable Graph Capsule Networks for Object Recognition
Interpretable Graph Capsule Networks for Object Recognition
Jindong Gu
Volker Tresp
FAtt
19
36
0
03 Dec 2020
A Study on the Uncertainty of Convolutional Layers in Deep Neural
  Networks
A Study on the Uncertainty of Convolutional Layers in Deep Neural Networks
Hao Shen
Sihong Chen
Ran Wang
30
5
0
27 Nov 2020
Previous
12345678
Next