ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.01350
  4. Cited By
Emergence of Invariance and Disentanglement in Deep Representations

Emergence of Invariance and Disentanglement in Deep Representations

5 June 2017
Alessandro Achille
Stefano Soatto
    OOD
    DRL
ArXivPDFHTML

Papers citing "Emergence of Invariance and Disentanglement in Deep Representations"

50 / 112 papers shown
Title
Single-Training Collaborative Object Detectors Adaptive to Bandwidth and
  Computation
Single-Training Collaborative Object Detectors Adaptive to Bandwidth and Computation
Juliano S. Assine
José Cândido Silveira Santos Filho
Eduardo Valle
ObjD
50
8
0
03 May 2021
Rapid Exploration for Open-World Navigation with Latent Goal Models
Rapid Exploration for Open-World Navigation with Latent Goal Models
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
32
70
0
12 Apr 2021
Learning Invariant Representation of Tasks for Robust Surgical State
  Estimation
Learning Invariant Representation of Tasks for Robust Surgical State Estimation
Yidan Qin
M. Allan
Yisong Yue
J. W. Burdick
M. Azizian
OOD
11
8
0
18 Feb 2021
A Variational Information Bottleneck Approach to Multi-Omics Data
  Integration
A Variational Information Bottleneck Approach to Multi-Omics Data Integration
Changhee Lee
M. Schaar
DRL
20
74
0
05 Feb 2021
Estimating informativeness of samples with Smooth Unique Information
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
27
24
0
17 Jan 2021
Artificial Neural Variability for Deep Learning: On Overfitting, Noise
  Memorization, and Catastrophic Forgetting
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
60
0
12 Nov 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
27
165
0
15 Oct 2020
Respecting Domain Relations: Hypothesis Invariance for Domain
  Generalization
Respecting Domain Relations: Hypothesis Invariance for Domain Generalization
Ziqi Wang
Marco Loog
Jan van Gemert
OOD
24
48
0
15 Oct 2020
Usable Information and Evolution of Optimal Representations During
  Training
Usable Information and Evolution of Optimal Representations During Training
Michael Kleinman
Alessandro Achille
Daksh Idnani
J. Kao
29
13
0
06 Oct 2020
Learning Optimal Representations with the Decodable Information
  Bottleneck
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
26
43
0
27 Sep 2020
Domain-invariant Similarity Activation Map Contrastive Learning for
  Retrieval-based Long-term Visual Localization
Domain-invariant Similarity Activation Map Contrastive Learning for Retrieval-based Long-term Visual Localization
Hanjiang Hu
Hesheng Wang
Zhe Liu
Weidong Chen
32
27
0
16 Sep 2020
DualDE: Dually Distilling Knowledge Graph Embedding for Faster and
  Cheaper Reasoning
DualDE: Dually Distilling Knowledge Graph Embedding for Faster and Cheaper Reasoning
Yushan Zhu
Wen Zhang
Mingyang Chen
Hui Chen
Xu-Xin Cheng
Wei Zhang
Huajun Chen Zhejiang University
22
3
0
13 Sep 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
32
18
0
27 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
34
65
0
04 Aug 2020
Beyond $\mathcal{H}$-Divergence: Domain Adaptation Theory With
  Jensen-Shannon Divergence
Beyond H\mathcal{H}H-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
38
22
0
30 Jul 2020
Tighter risk certificates for neural networks
Tighter risk certificates for neural networks
Maria Perez-Ortiz
Omar Rivasplata
John Shawe-Taylor
Csaba Szepesvári
UQCV
20
102
0
25 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity
  from DNNs
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
19
18
0
29 Jun 2020
A Variational Approach to Privacy and Fairness
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
19
25
0
11 Jun 2020
On the Maximum Mutual Information Capacity of Neural Architectures
On the Maximum Mutual Information Capacity of Neural Architectures
Brandon Foggo
Nan Yu
TPM
23
3
0
10 Jun 2020
Generalization Bounds via Information Density and Conditional
  Information Density
Generalization Bounds via Information Density and Conditional Information Density
Fredrik Hellström
G. Durisi
27
65
0
16 May 2020
Learning to Manipulate Individual Objects in an Image
Learning to Manipulate Individual Objects in an Image
Yanchao Yang
Yutong Chen
Stefano Soatto
OCL
13
37
0
11 Apr 2020
Adversarial Latent Autoencoders
Adversarial Latent Autoencoders
Stanislav Pidhorskyi
Donald Adjeroh
Gianfranco Doretto
GAN
DRL
51
259
0
09 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Zhuowen Tu
DRL
CoGe
34
106
0
02 Apr 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic
  Objectives in Deep Learning
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
27
16
0
27 Mar 2020
On Information Plane Analyses of Neural Network Classifiers -- A Review
On Information Plane Analyses of Neural Network Classifiers -- A Review
Bernhard C. Geiger
32
50
0
21 Mar 2020
The Variational InfoMax Learning Objective
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
21
0
0
07 Mar 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
Forgetting Outside the Box: Scrubbing Deep Networks of Information
  Accessible from Input-Output Observations
Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations
Aditya Golatkar
Alessandro Achille
Stefano Soatto
MU
OOD
22
189
0
05 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Convolutional Tensor-Train LSTM for Spatio-temporal Learning
Convolutional Tensor-Train LSTM for Spatio-temporal Learning
Jiahao Su
Wonmin Byeon
Jean Kossaifi
Furong Huang
Jan Kautz
Anima Anandkumar
AI4TS
19
119
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
641
0
20 Feb 2020
CEB Improves Model Robustness
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
Unsupervised Representation Disentanglement using Cross Domain Features
  and Adversarial Learning in Variational Autoencoder based Voice Conversion
Unsupervised Representation Disentanglement using Cross Domain Features and Adversarial Learning in Variational Autoencoder based Voice Conversion
Wen-Chin Huang
Hao Luo
Hsin-Te Hwang
Chen-Chou Lo
Yu-Huai Peng
Yu Tsao
Hsin-Min Wang
DRL
17
42
0
22 Jan 2020
Learning credit assignment
Learning credit assignment
Chan Li
Haiping Huang
20
7
0
10 Jan 2020
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
24
21
0
20 Nov 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
Tuning-Free Disentanglement via Projection
Tuning-Free Disentanglement via Projection
Yue Bai
L. Duan
21
3
0
27 Jun 2019
The Variational InfoMax AutoEncoder
The Variational InfoMax AutoEncoder
Vincenzo Crescimanna
Bruce P. Graham
DRL
12
3
0
25 May 2019
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for
  Investigating Learned Representations
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations
J. Livezey
Ahyeon Hwang
Jacob Yeung
K. Bouchard
36
0
0
23 May 2019
Minimal Achievable Sufficient Statistic Learning
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
25
12
0
19 May 2019
The Information Complexity of Learning Tasks, their Structure and their
  Distance
The Information Complexity of Learning Tasks, their Structure and their Distance
Alessandro Achille
Giovanni Paolini
G. Mbeng
Stefano Soatto
11
51
0
05 Apr 2019
Task2Vec: Task Embedding for Meta-Learning
Task2Vec: Task Embedding for Meta-Learning
Alessandro Achille
Michael Lam
Rahul Tewari
Avinash Ravichandran
Subhransu Maji
Charless C. Fowlkes
Stefano Soatto
Pietro Perona
SSL
28
309
0
10 Feb 2019
Neural Persistence: A Complexity Measure for Deep Neural Networks Using
  Algebraic Topology
Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology
Bastian Alexander Rieck
Matteo Togninalli
Christian Bock
Michael Moor
Max Horn
Thomas Gumbsch
Karsten M. Borgwardt
36
111
0
23 Dec 2018
Statistical Characteristics of Deep Representations: An Empirical
  Investigation
Statistical Characteristics of Deep Representations: An Empirical Investigation
Daeyoung Choi
Kyungeun Lee
Changho Shin
Stephen J. Roberts
AI4TS
18
2
0
08 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
33
166
0
01 Nov 2018
Analyzing biological and artificial neural networks: challenges with
  opportunities for synergy?
Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
David Barrett
Ari S. Morcos
Jakob H. Macke
AI4CE
25
110
0
31 Oct 2018
Interpretable Neuron Structuring with Graph Spectral Regularization
Interpretable Neuron Structuring with Graph Spectral Regularization
Alexander Tong
David van Dijk
Jay S. Stanley
Matthew Amodio
Kristina M. Yim
R. Muhle
J. Noonan
Guy Wolf
Smita Krishnaswamy
32
6
0
30 Sep 2018
Distributed Variational Representation Learning
Distributed Variational Representation Learning
Iñaki Estella Aguerri
Milad Sefidgaran
23
71
0
11 Jul 2018
Deformable Generator Networks: Unsupervised Disentanglement of
  Appearance and Geometry
Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry
X. Xing
Ruiqi Gao
Tian Han
Song-Chun Zhu
Ying Nian Wu
DRL
24
28
0
16 Jun 2018
Previous
123
Next