ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.03292
11
51

The Information Complexity of Learning Tasks, their Structure and their Distance

5 April 2019
Alessandro Achille
Giovanni Paolini
G. Mbeng
Stefano Soatto
ArXivPDFHTML
Abstract

We introduce an asymmetric distance in the space of learning tasks, and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine-tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset, and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity, Shannon, and Fisher Information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in Deep Learning.

View on arXiv
Comments on this paper