ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03666
16
2

Statistical Characteristics of Deep Representations: An Empirical Investigation

8 November 2018
Daeyoung Choi
Kyungeun Lee
Changho Shin
Stephen J. Roberts
    AI4TS
ArXivPDFHTML
Abstract

In this study, the effects of eight representation regularization methods are investigated, including two newly developed rank regularizers (RR). The investigation shows that the statistical characteristics of representations such as correlation, sparsity, and rank can be manipulated as intended, during training. Furthermore, it is possible to improve the baseline performance simply by trying all the representation regularizers and fine-tuning the strength of their effects. In contrast to performance improvement, no consistent relationship between performance and statistical characteristics was observable. The results indicate that manipulation of statistical characteristics can be helpful for improving performance, but only indirectly through its influence on learning dynamics or its tuning effects.

View on arXiv
Comments on this paper