Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08665
Cited By
Bayesian Compression for Deep Learning
24 May 2017
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Compression for Deep Learning"
22 / 72 papers shown
Title
Where Do Human Heuristics Come From?
Marcel Binz
Dominik M. Endres
16
0
0
20 Feb 2019
Proximal Mean-field for Neural Network Quantization
Thalaiyasingam Ajanthan
P. Dokania
Richard I. Hartley
Philip H. S. Torr
MQ
30
20
0
11 Dec 2018
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
19
57
0
09 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
22
99
0
08 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
37
692
0
03 Dec 2018
Rate Distortion For Model Compression: From Theory To Practice
Weihao Gao
Yu-Han Liu
Chong-Jun Wang
Sewoong Oh
25
31
0
09 Oct 2018
Relaxed Quantization for Discretized Neural Networks
Christos Louizos
M. Reisser
Tijmen Blankevoort
E. Gavves
Max Welling
MQ
27
131
0
03 Oct 2018
Probabilistic Binary Neural Networks
Jorn W. T. Peters
Max Welling
BDL
UQCV
MQ
17
50
0
10 Sep 2018
Selfless Sequential Learning
Rahaf Aljundi
Marcus Rohrbach
Tinne Tuytelaars
CLL
28
114
0
14 Jun 2018
Scalable Neural Network Compression and Pruning Using Hard Clustering and L1 Regularization
Yibo Yang
Nicholas Ruozzi
Vibhav Gogate
16
2
0
14 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
15
77
0
13 Jun 2018
Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking
Haichuan Yang
Yuhao Zhu
Ji Liu
CVBM
14
36
0
12 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
18
6
0
19 May 2018
Nonparametric Bayesian Deep Networks with Local Competition
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
22
32
0
19 May 2018
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger C. Grosse
BDL
9
307
0
12 Mar 2018
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
24
178
0
28 Feb 2018
The Description Length of Deep Learning Models
Léonard Blier
Yann Ollivier
24
95
0
20 Feb 2018
Learning Discrete Weights Using the Local Reparameterization Trick
Oran Shayer
Dan Levi
Ethan Fetaya
13
88
0
21 Oct 2017
Learning Intrinsic Sparse Structures within Long Short-Term Memory
W. Wen
Yuxiong He
Samyam Rajbhandari
Minjia Zhang
Wenhan Wang
Fang Liu
Bin Hu
Yiran Chen
H. Li
MQ
27
140
0
15 Sep 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
Previous
1
2