Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08665
Cited By
Bayesian Compression for Deep Learning
24 May 2017
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Compression for Deep Learning"
50 / 68 papers shown
Title
Identifying Causal Direction via Variational Bayesian Compression
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
CML
34
0
0
12 May 2025
ARQ: A Mixed-Precision Quantization Framework for Accurate and Certifiably Robust DNNs
Yuchen Yang
Shubham Ugare
Yifan Zhao
Gagandeep Singh
Sasa Misailovic
MQ
26
0
0
31 Oct 2024
Neural Network Compression for Reinforcement Learning Tasks
Dmitry A. Ivanov
D. Larionov
Oleg V. Maslennikov
V. Voevodin
OffRL
AI4CE
45
0
0
13 May 2024
Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design
A. N. M. N. Abeer
Sanket R. Jantre
Nathan M. Urban
Byung-Jun Yoon
44
1
0
30 Apr 2024
Pruning a neural network using Bayesian inference
Sunil Mathew
D. Rowe
10
0
0
04 Aug 2023
STen: Productive and Efficient Sparsity in PyTorch
Andrei Ivanov
Nikoli Dryden
Tal Ben-Nun
Saleh Ashkboos
Torsten Hoefler
32
4
0
15 Apr 2023
SpArX: Sparse Argumentative Explanations for Neural Networks [Technical Report]
Hamed Ayoobi
Nico Potyka
Francesca Toni
16
17
0
23 Jan 2023
CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level Continuous Sparsification
Lirui Xiao
Huanrui Yang
Zhen Dong
Kurt Keutzer
Li Du
Shanghang Zhang
MQ
27
10
0
06 Dec 2022
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
30
3
0
12 Sep 2022
Minimum Description Length Control
Theodore H. Moskovitz
Ta-Chu Kao
M. Sahani
M. Botvinick
20
1
0
17 Jul 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
65
75
0
28 May 2022
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
40
10
0
17 May 2022
Fast Conditional Network Compression Using Bayesian HyperNetworks
Phuoc Nguyen
T. Tran
Ky Le
Sunil R. Gupta
Santu Rana
Dang Nguyen
Trong Nguyen
S. Ryan
Svetha Venkatesh
BDL
30
6
0
13 May 2022
Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity
Arber Qoku
Florian Buettner
21
5
0
13 Apr 2022
LilNetX: Lightweight Networks with EXtreme Model Compression and Structured Sparsification
Sharath Girish
Kamal Gupta
Saurabh Singh
Abhinav Shrivastava
28
11
0
06 Apr 2022
Nonlocal optimization of binary neural networks
Amir Khoshaman
Giuseppe Castiglione
C. Srinivasa
13
0
0
05 Apr 2022
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
Neural network relief: a pruning algorithm based on neural activity
Aleksandr Dekhovich
David Tax
M. Sluiter
Miguel A. Bessa
46
10
0
22 Sep 2021
Stochastic Transformer Networks with Linear Competing Units: Application to end-to-end SL Translation
Andreas Voskou
Konstantinos P. Panousis
D. Kosmopoulos
Dimitris N. Metaxas
S. Chatzis
SLR
30
43
0
01 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Learning Gradual Argumentation Frameworks using Genetic Algorithms
J. Spieler
Nico Potyka
Steffen Staab
AI4CE
31
4
0
25 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
COIN: COmpression with Implicit Neural representations
Emilien Dupont
Adam Goliñski
Milad Alizadeh
Yee Whye Teh
Arnaud Doucet
20
223
0
03 Mar 2021
An Information-Theoretic Justification for Model Pruning
Berivan Isik
Tsachy Weissman
Albert No
84
35
0
16 Feb 2021
Minimum Excess Risk in Bayesian Learning
Aolin Xu
Maxim Raginsky
26
37
0
29 Dec 2020
DiffPrune: Neural Network Pruning with Deterministic Approximate Binary Gates and
L
0
L_0
L
0
Regularization
Yaniv Shulman
40
3
0
07 Dec 2020
Generalized Variational Continual Learning
Noel Loo
S. Swaroop
Richard E. Turner
BDL
CLL
33
58
0
24 Nov 2020
Rethinking Weight Decay For Efficient Neural Network Pruning
Hugo Tessier
Vincent Gripon
Mathieu Léonardon
M. Arzel
T. Hannagan
David Bertrand
26
25
0
20 Nov 2020
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
27
3
0
10 Nov 2020
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
36
15
0
10 Nov 2020
Training Sparse Neural Networks using Compressed Sensing
Jonathan W. Siegel
Jianhong Chen
Pengchuan Zhang
Jinchao Xu
24
5
0
21 Aug 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
17
20
0
16 May 2020
Data-Free Network Quantization With Adversarial Knowledge Distillation
Yoojin Choi
Jihwan P. Choi
Mostafa El-Khamy
Jungwon Lee
MQ
16
119
0
08 May 2020
Information-Theoretic Probing with Minimum Description Length
Elena Voita
Ivan Titov
19
270
0
27 Mar 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
Iteratively Training Look-Up Tables for Network Quantization
Fabien Cardinaux
Stefan Uhlich
K. Yoshiyama
Javier Alonso García
Lukas Mauch
Stephen Tiedemann
Thomas Kemp
Akira Nakamura
MQ
27
16
0
12 Nov 2019
Training DNN IoT Applications for Deployment On Analog NVM Crossbars
F. García-Redondo
Shidhartha Das
G. Rosendale
17
5
0
30 Oct 2019
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
41
92
0
27 Jul 2019
Learning Multimodal Fixed-Point Weights using Gradient Descent
Lukas Enderich
Fabian Timm
Lars Rosenbaum
Wolfram Burgard
MQ
17
9
0
16 Jul 2019
Sparse Networks from Scratch: Faster Training without Losing Performance
Tim Dettmers
Luke Zettlemoyer
20
333
0
10 Jul 2019
Deep Active Learning with Adaptive Acquisition
Manuel Haussmann
Fred Hamprecht
M. Kandemir
16
41
0
27 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
23
77
0
19 Jun 2019
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers
Igor Fedorov
Ryan P. Adams
Matthew Mattina
P. Whatmough
13
164
0
28 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Training CNNs with Selective Allocation of Channels
Jongheon Jeong
Jinwoo Shin
CVBM
31
15
0
11 May 2019
Towards Efficient Model Compression via Learned Global Ranking
Ting-Wu Chin
Ruizhou Ding
Cha Zhang
Diana Marculescu
16
170
0
28 Apr 2019
Where Do Human Heuristics Come From?
Marcel Binz
Dominik M. Endres
11
0
0
20 Feb 2019
Proximal Mean-field for Neural Network Quantization
Thalaiyasingam Ajanthan
P. Dokania
Richard I. Hartley
Philip H. S. Torr
MQ
30
20
0
11 Dec 2018
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
19
57
0
09 Dec 2018
1
2
Next