Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08665
Cited By
v1
v2
v3
v4 (latest)
Bayesian Compression for Deep Learning
24 May 2017
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Compression for Deep Learning"
50 / 269 papers shown
Title
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
76
3
0
10 Nov 2020
Sparse within Sparse Gaussian Processes using Neighbor Information
Gia-Lac Tran
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
43
16
0
10 Nov 2020
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
84
16
0
10 Nov 2020
Layer-adaptive sparsity for the Magnitude-based Pruning
Jaeho Lee
Sejun Park
Sangwoo Mo
SungSoo Ahn
Jinwoo Shin
95
206
0
15 Oct 2020
Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win
Utku Evci
Yani Andrew Ioannou
Cem Keskin
Yann N. Dauphin
82
94
0
07 Oct 2020
A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions
Rahul Mishra
Hari Prabhat Gupta
Tanima Dutta
66
93
0
05 Oct 2020
Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991-2020)
R. Alizadehsani
M. Roshanzamir
Sadiq Hussain
Abbas Khosravi
Afsaneh Koohestani
...
M. Panahiazar
S. Nahavandi
D. Srinivasan
A. Atiya
U. Acharya
OOD
84
99
0
23 Aug 2020
Training Sparse Neural Networks using Compressed Sensing
Jonathan W. Siegel
Jianhong Chen
Pengchuan Zhang
Jinchao Xu
82
5
0
21 Aug 2020
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
72
42
0
21 Aug 2020
Towards Modality Transferable Visual Information Representation with Optimal Model Compression
Rongqun Lin
Linwei Zhu
Shiqi Wang
Sam Kwong
65
2
0
13 Aug 2020
Degree-Quant: Quantization-Aware Training for Graph Neural Networks
Shyam A. Tailor
Javier Fernandez-Marques
Nicholas D. Lane
GNN
MQ
82
145
0
11 Aug 2020
Differentiable Joint Pruning and Quantization for Hardware Efficiency
Ying Wang
Yadong Lu
Tijmen Blankevoort
MQ
97
72
0
20 Jul 2020
VINNAS: Variational Inference-based Neural Network Architecture Search
Martin Ferianc
Hongxiang Fan
Miguel R. D. Rodrigues
3DPC
176
6
0
12 Jul 2020
ESPN: Extremely Sparse Pruned Networks
Minsu Cho
Ameya Joshi
Chinmay Hegde
56
9
0
28 Jun 2020
Topological Insights into Sparse Neural Networks
Shiwei Liu
T. Lee
Anil Yaman
Zahra Atashgahi
David L. Ferraro
Ghada Sokar
Mykola Pechenizkiy
Decebal Constantin Mocanu
68
30
0
24 Jun 2020
Slimming Neural Networks using Adaptive Connectivity Scores
Madan Ravi Ganesh
Dawsin Blanchard
Jason J. Corso
Salimeh Yasaei Sekeh
67
11
0
22 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
160
100
0
05 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
69
20
0
16 May 2020
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCV
BDL
107
215
0
14 May 2020
Bayesian Bits: Unifying Quantization and Pruning
M. V. Baalen
Christos Louizos
Markus Nagel
Rana Ali Amjad
Ying Wang
Tijmen Blankevoort
Max Welling
MQ
101
116
0
14 May 2020
Data-Free Network Quantization With Adversarial Knowledge Distillation
Yoojin Choi
Jihwan P. Choi
Mostafa El-Khamy
Jungwon Lee
MQ
76
121
0
08 May 2020
Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)
Arturo Marbán
Daniel Becking
Simon Wiedemann
Wojciech Samek
MQ
51
12
0
02 Apr 2020
Information-Theoretic Probing with Minimum Description Length
Elena Voita
Ivan Titov
127
276
0
27 Mar 2020
Bayesian Sparsification Methods for Deep Complex-valued Networks
Ivan Nazarov
Evgeny Burnaev
BDL
46
0
0
25 Mar 2020
BiDet: An Efficient Binarized Object Detector
Ziwei Wang
Ziyi Wu
Jiwen Lu
Jie Zhou
MQ
125
66
0
09 Mar 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
306
1,058
0
06 Mar 2020
Learned Threshold Pruning
K. Azarian
Yash Bhalgat
Jinwon Lee
Tijmen Blankevoort
MQ
86
38
0
28 Feb 2020
Informative Bayesian Neural Network Priors for Weak Signals
Tianyu Cui
A. Havulinna
Pekka Marttinen
Samuel Kaski
67
9
0
24 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
101
335
0
22 Feb 2020
SYMOG: learning symmetric mixture of Gaussian modes for improved fixed-point quantization
Lukas Enderich
Fabian Timm
Wolfram Burgard
MQ
32
6
0
19 Feb 2020
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
Wei Deng
Junwei Pan
Tian Zhou
Deguang Kong
Aaron Flores
Guang Lin
34
4
0
17 Feb 2020
Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
Sejun Park
Jaeho Lee
Sangwoo Mo
Jinwoo Shin
65
94
0
12 Feb 2020
Soft Threshold Weight Reparameterization for Learnable Sparsity
Aditya Kusupati
Vivek Ramanujan
Raghav Somani
Mitchell Wortsman
Prateek Jain
Sham Kakade
Ali Farhadi
211
247
0
08 Feb 2020
An Equivalence between Bayesian Priors and Penalties in Variational Inference
Pierre Wolinski
Guillaume Charpiat
Yann Ollivier
BDL
51
1
0
01 Feb 2020
A "Network Pruning Network" Approach to Deep Model Compression
Vinay Kumar Verma
Pravendra Singh
Vinay P. Namboodiri
Piyush Rai
3DPC
VLM
58
8
0
15 Jan 2020
Resource-Efficient Neural Networks for Embedded Systems
Wolfgang Roth
Günther Schindler
Lukas Pfeifenberger
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
92
51
0
07 Jan 2020
Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks
Andrey Kuzmin
Markus Nagel
Saurabh Pitre
Sandeep Pendyam
Tijmen Blankevoort
Max Welling
75
27
0
20 Dec 2019
Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning
Samuel Kessler
Vu Nguyen
S. Zohren
Stephen J. Roberts
BDL
94
25
0
04 Dec 2019
Rodent: Relevance determination in differential equations
Niklas Heim
Václav vSmídl
Tomávs Pevný
82
5
0
02 Dec 2019
Efficient Approximate Inference with Walsh-Hadamard Variational Inference
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
38
1
0
29 Nov 2019
Continual Learning with Adaptive Weights (CLAW)
T. Adel
Han Zhao
Richard Turner
CLL
76
73
0
21 Nov 2019
Structured Sparsification of Gated Recurrent Neural Networks
E. Lobacheva
Nadezhda Chirkova
Alexander Markovich
Dmitry Vetrov
67
3
0
13 Nov 2019
Iteratively Training Look-Up Tables for Network Quantization
Fabien Cardinaux
Stefan Uhlich
K. Yoshiyama
Javier Alonso García
Lukas Mauch
Stephen Tiedemann
Thomas Kemp
Akira Nakamura
MQ
102
16
0
12 Nov 2019
Shrinkage with shrunken shoulders: Gibbs sampling shrinkage model posteriors with guaranteed convergence rates
A. Nishimura
M. Suchard
110
9
0
06 Nov 2019
Dynamic Regularizer with an Informative Prior
Avinash Kori
Manik Sharma
16
0
0
31 Oct 2019
Training DNN IoT Applications for Deployment On Analog NVM Crossbars
F. García-Redondo
Shidhartha Das
G. Rosendale
55
5
0
30 Oct 2019
Variational Student: Learning Compact and Sparser Networks in Knowledge Distillation Framework
Srinidhi Hegde
Ranjitha Prasad
R. Hebbalaguppe
Vishwajith Kumar
35
18
0
26 Oct 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
126
44
0
23 Oct 2019
Mirror Descent View for Neural Network Quantization
Thalaiyasingam Ajanthan
Kartik Gupta
Philip Torr
Leonid Sigal
P. Dokania
MQ
83
25
0
18 Oct 2019
Automatic Neural Network Compression by Sparsity-Quantization Joint Learning: A Constrained Optimization-based Approach
Haichuan Yang
Shupeng Gui
Yuhao Zhu
Ji Liu
MQ
73
5
0
14 Oct 2019
Previous
1
2
3
4
5
6
Next