ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08584
  4. Cited By
MMD GAN: Towards Deeper Understanding of Moment Matching Network

MMD GAN: Towards Deeper Understanding of Moment Matching Network

24 May 2017
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
    GAN
ArXivPDFHTML

Papers citing "MMD GAN: Towards Deeper Understanding of Moment Matching Network"

50 / 160 papers shown
Title
Smoothness and Stability in GANs
Smoothness and Stability in GANs
Casey Chu
Kentaro Minami
Kenji Fukumizu
GAN
24
56
0
11 Feb 2020
Simulation of electron-proton scattering events by a Feature-Augmented
  and Transformed Generative Adversarial Network (FAT-GAN)
Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)
Yasir Alanazi
Nobuo Sato
Tianbo Liu
W. Melnitchouk
P. Ambrozewicz
...
E. Pritchard
M. Robertson
R. Strauss
L. Velasco
Yaohang Li
GAN
32
63
0
29 Jan 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
33
821
0
20 Jan 2020
Towards GAN Benchmarks Which Require Generalization
Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani
Colin Raffel
Luke Metz
24
57
0
10 Jan 2020
On Computation and Generalization of Generative Adversarial Imitation
  Learning
On Computation and Generalization of Generative Adversarial Imitation Learning
Minshuo Chen
Yizhou Wang
Tianyi Liu
Zhuoran Yang
Xingguo Li
Zhaoran Wang
T. Zhao
37
40
0
09 Jan 2020
Self-supervised GAN: Analysis and Improvement with Multi-class Minimax
  Game
Self-supervised GAN: Analysis and Improvement with Multi-class Minimax Game
Ngoc-Trung Tran
Viet-Hung Tran
Ngoc-Bao Nguyen
Linxiao Yang
Ngai-man Cheung
SSL
GAN
23
60
0
16 Nov 2019
Small-GAN: Speeding Up GAN Training Using Core-sets
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
38
72
0
29 Oct 2019
Adversarial Fisher Vectors for Unsupervised Representation Learning
Adversarial Fisher Vectors for Unsupervised Representation Learning
Shuangfei Zhai
Walter A. Talbott
Carlos Guestrin
J. Susskind
GAN
22
9
0
29 Oct 2019
Fair Generative Modeling via Weak Supervision
Fair Generative Modeling via Weak Supervision
Kristy Choi
Aditya Grover
Trisha Singh
Rui Shu
Stefano Ermon
36
133
0
26 Oct 2019
Bridging the Gap Between $f$-GANs and Wasserstein GANs
Bridging the Gap Between fff-GANs and Wasserstein GANs
Jiaming Song
Stefano Ermon
25
40
0
22 Oct 2019
Two-sample Testing Using Deep Learning
Two-sample Testing Using Deep Learning
Matthias Kirchler
S. Khorasani
Marius Kloft
C. Lippert
16
38
0
14 Oct 2019
Stabilizing Generative Adversarial Networks: A Survey
Stabilizing Generative Adversarial Networks: A Survey
Maciej Wiatrak
Stefano V. Albrecht
A. Nystrom
GAN
29
84
0
30 Sep 2019
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
131
101
0
28 Sep 2019
Subsampling Generative Adversarial Networks: Density Ratio Estimation in
  Feature Space with Softplus Loss
Subsampling Generative Adversarial Networks: Density Ratio Estimation in Feature Space with Softplus Loss
Xin Ding
Z. Jane Wang
William J. Welch
21
18
0
24 Sep 2019
Comparing distributions: $\ell_1$ geometry improves kernel two-sample
  testing
Comparing distributions: ℓ1\ell_1ℓ1​ geometry improves kernel two-sample testing
M. Scetbon
Gaël Varoquaux
25
10
0
19 Sep 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug
  discovery using deep learning
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
30
92
0
20 Aug 2019
Deep Kernel Learning for Clustering
Deep Kernel Learning for Clustering
Chieh-Tsai Wu
Zulqarnain Khan
Yale Chang
Stratis Ioannidis
Jennifer Dy
104
13
0
09 Aug 2019
Twin Auxiliary Classifiers GAN
Twin Auxiliary Classifiers GAN
Biwei Huang
Yanwu Xu
Chunyuan Li
Kuncai Zhang
Kayhan Batmanghelich
16
33
0
05 Jul 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
27
70
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
27
159
0
11 Jun 2019
Kernel Conditional Density Operators
Kernel Conditional Density Operators
Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
30
25
0
27 May 2019
The Shape of Data: Intrinsic Distance for Data Distributions
The Shape of Data: Intrinsic Distance for Data Distributions
Anton Tsitsulin
Marina Munkhoeva
Davide Mottin
Panagiotis Karras
A. Bronstein
Ivan Oseledets
Emmanuel Müller
23
52
0
27 May 2019
Kernel Mean Matching for Content Addressability of GANs
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum
Patsorn Sangkloy
Muhammad Waleed Gondal
Amit Raj
James Hays
Bernhard Schölkopf
GAN
BDL
32
9
0
14 May 2019
Flat Metric Minimization with Applications in Generative Modeling
Flat Metric Minimization with Applications in Generative Modeling
Thomas Möllenhoff
Daniel Cremers
17
5
0
12 May 2019
Meta-Sim: Learning to Generate Synthetic Datasets
Meta-Sim: Learning to Generate Synthetic Datasets
Amlan Kar
Aayush Prakash
Ming Liu
Eric Cameracci
Justin Yuan
Matt Rusiniak
David Acuna
Antonio Torralba
Sanja Fidler
22
248
0
25 Apr 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward
  Energy-Based Model
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
29
209
0
22 Apr 2019
Learning Implicit Generative Models by Matching Perceptual Features
Learning Implicit Generative Models by Matching Perceptual Features
Cicero Nogueira dos Santos
Youssef Mroueh
Inkit Padhi
Pierre Dognin
GAN
43
28
0
04 Apr 2019
Nonparametric Density Estimation & Convergence Rates for GANs under
  Besov IPM Losses
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses
Ananya Uppal
Shashank Singh
Barnabás Póczós
30
52
0
09 Feb 2019
Deconstructing Generative Adversarial Networks
Deconstructing Generative Adversarial Networks
Banghua Zhu
Jiantao Jiao
David Tse
34
49
0
27 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
27
36
0
24 Jan 2019
Kernel Change-point Detection with Auxiliary Deep Generative Models
Kernel Change-point Detection with Auxiliary Deep Generative Models
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
16
67
0
18 Jan 2019
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with
  Generative Adversarial Networks
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
Dan Li
Dacheng Chen
Lei Shi
Baihong Jin
Jonathan Goh
See-Kiong Ng
34
763
0
15 Jan 2019
InstaGAN: Instance-aware Image-to-Image Translation
InstaGAN: Instance-aware Image-to-Image Translation
Sangwoo Mo
Minsu Cho
Jinwoo Shin
36
157
0
28 Dec 2018
Improving MMD-GAN Training with Repulsive Loss Function
Improving MMD-GAN Training with Repulsive Loss Function
Wei Wang
Yuan Sun
Saman K. Halgamuge
GAN
17
79
0
24 Dec 2018
Moment Matching for Multi-Source Domain Adaptation
Moment Matching for Multi-Source Domain Adaptation
Xingchao Peng
Qinxun Bai
Xide Xia
Zijun Huang
Kate Saenko
Bo Wang
OOD
74
1,754
0
04 Dec 2018
Spread Divergence
Spread Divergence
Mingtian Zhang
Peter Hayes
Thomas Bird
Raza Habib
David Barber
MedIm
UD
30
20
0
21 Nov 2018
Bayesian Cycle-Consistent Generative Adversarial Networks via
  Marginalizing Latent Sampling
Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling
Haoran You
Yu Cheng
Tianheng Cheng
Chunliang Li
Pan Zhou
GAN
29
3
0
19 Nov 2018
Deep Knockoffs
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
18
139
0
16 Nov 2018
Adversarial Balancing for Causal Inference
Adversarial Balancing for Causal Inference
Michal Ozery-Flato
Pierre Thodoroff
Matan Ninio
Michal Rosen-Zvi
T. El-Hay
CML
GAN
16
25
0
17 Oct 2018
Discriminator Rejection Sampling
Discriminator Rejection Sampling
S. Azadi
Catherine Olsson
Trevor Darrell
Ian Goodfellow
Augustus Odena
30
131
0
16 Oct 2018
Point Cloud GAN
Point Cloud GAN
Chun-Liang Li
Manzil Zaheer
Yang Zhang
Barnabás Póczós
Ruslan Salakhutdinov
3DPC
42
209
0
13 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
13
15
0
30 Sep 2018
Learning Implicit Generative Models by Teaching Explicit Ones
Learning Implicit Generative Models by Teaching Explicit Ones
Chao Du
Kun Xu
Chongxuan Li
Jun Zhu
Bo Zhang
DRL
GAN
14
9
0
10 Jul 2018
MedGAN: Medical Image Translation using GANs
MedGAN: Medical Image Translation using GANs
Karim Armanious
Chenming Yang
Marc Fischer
Thomas Kustner
K. Nikolaou
S. Gatidis
Bin Yang
GAN
MedIm
14
540
0
17 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
31
26
0
07 Jun 2018
On GANs and GMMs
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
23
150
0
31 May 2018
Counterfactual Mean Embeddings
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CML
OffRL
23
38
0
22 May 2018
Nonparametric Density Estimation under Adversarial Losses
Nonparametric Density Estimation under Adversarial Losses
Shashank Singh
Ananya Uppal
Boyue Li
Chun-Liang Li
Manzil Zaheer
Barnabás Póczós
GAN
29
55
0
22 May 2018
BourGAN: Generative Networks with Metric Embeddings
BourGAN: Generative Networks with Metric Embeddings
Chang Xiao
Peilin Zhong
Changxi Zheng
GAN
18
69
0
19 May 2018
Causal Generative Domain Adaptation Networks
Causal Generative Domain Adaptation Networks
Biwei Huang
Kun Zhang
Erdun Gao
Clark Glymour
Dacheng Tao
Kayhan Batmanghelich
CML
OOD
TTA
30
21
0
12 Apr 2018
Previous
1234
Next