ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08584
  4. Cited By
MMD GAN: Towards Deeper Understanding of Moment Matching Network

MMD GAN: Towards Deeper Understanding of Moment Matching Network

24 May 2017
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
    GAN
ArXivPDFHTML

Papers citing "MMD GAN: Towards Deeper Understanding of Moment Matching Network"

50 / 157 papers shown
Title
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Insung Kong
Kunwoong Kim
Yongdai Kim
FaML
32
1
0
09 May 2025
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
ReLU integral probability metric and its applications
ReLU integral probability metric and its applications
Yuha Park
Kunwoong Kim
Insung Kong
Yongdai Kim
48
0
0
26 Apr 2025
MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
Lin Yuan
Xuelong Li
Yan Zhang
Jiawei Zhang
Hongbo Li
Xinbo Gao
38
0
0
18 Apr 2025
PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Kyeongkook Seo
Dong-Jun Han
Jaejun Yoo
45
0
0
11 Mar 2025
Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection
Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection
Xinjie Cui
Yuan Li
Ao Luo
Jiaran Zhou
Junyu Dong
131
4
0
29 Nov 2024
Learning Deep Kernels for Non-Parametric Independence Testing
Learning Deep Kernels for Non-Parametric Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
34
0
0
10 Sep 2024
Improving Synthetic Image Detection Towards Generalization: An Image Transformation Perspective
Improving Synthetic Image Detection Towards Generalization: An Image Transformation Perspective
Ouxiang Li
Jiayin Cai
Y. Hao
Xiaolong Jiang
Yao Hu
Fuli Feng
AAML
35
8
0
13 Aug 2024
Submodular Framework for Structured-Sparse Optimal Transport
Submodular Framework for Structured-Sparse Optimal Transport
Piyushi Manupriya
Pratik Jawanpuria
Karthik S. Gurumoorthy
SakethaNath Jagarlapudi
Bamdev Mishra
OT
97
0
0
07 Jun 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
40
8
0
10 May 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic
  Systems
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núñez
36
13
0
06 Feb 2024
Image Synthesis with Graph Conditioning: CLIP-Guided Diffusion Models
  for Scene Graphs
Image Synthesis with Graph Conditioning: CLIP-Guided Diffusion Models for Scene Graphs
Rameshwar Mishra
A. V. Subramanyam
DiffM
30
2
0
25 Jan 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via
  Leverage Scores Sampling
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
Ernesto De Vito
Lorenzo Rosasco
27
3
0
22 Nov 2023
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
37
4
0
13 Nov 2023
Domain Generalisation via Risk Distribution Matching
Domain Generalisation via Risk Distribution Matching
Toan Nguyen
Kien Do
Bao Duong
T. Nguyen
OOD
39
4
0
28 Oct 2023
Bayesian Domain Invariant Learning via Posterior Generalization of
  Parameter Distributions
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDL
OOD
37
1
0
25 Oct 2023
Increasing Entropy to Boost Policy Gradient Performance on
  Personalization Tasks
Increasing Entropy to Boost Policy Gradient Performance on Personalization Tasks
Andrew Starnes
Anton Dereventsov
Clayton Webster
24
0
0
09 Oct 2023
Stability Analysis Framework for Particle-based Distance GANs with
  Wasserstein Gradient Flow
Stability Analysis Framework for Particle-based Distance GANs with Wasserstein Gradient Flow
Chuqi Chen
Yue Wu
Yang Xiang
GAN
17
0
0
04 Jul 2023
Data Interpolants -- That's What Discriminators in Higher-order
  Gradient-regularized GANs Are
Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are
Siddarth Asokan
C. Seelamantula
32
4
0
01 Jun 2023
The Representation Jensen-Shannon Divergence
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
40
6
0
25 May 2023
PCF-GAN: generating sequential data via the characteristic function of
  measures on the path space
PCF-GAN: generating sequential data via the characteristic function of measures on the path space
Hang Lou
Siran Li
Hao Ni
AI4TS
46
10
0
21 May 2023
Local Convergence of Gradient Descent-Ascent for Training Generative
  Adversarial Networks
Local Convergence of Gradient Descent-Ascent for Training Generative Adversarial Networks
Evan Becker
Parthe Pandit
S. Rangan
A. Fletcher
GAN
26
1
0
14 May 2023
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy
  Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial
  Networks
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial Networks
Forough Fazeli Asl
M. Zhang
Lizhen Lin
29
1
0
05 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving
  Data Generation
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
33
14
0
03 Mar 2023
Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for
  Adversarial Nets
Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets
Hussein Hazimeh
Natalia Ponomareva
GAN
33
2
0
31 Jan 2023
Constrained Policy Optimization with Explicit Behavior Density for
  Offline Reinforcement Learning
Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning
Jing Zhang
Chi Zhang
Wenjia Wang
Bing-Yi Jing
OffRL
35
7
0
28 Jan 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
42
12
0
27 Jan 2023
Fast Inference in Denoising Diffusion Models via MMD Finetuning
Fast Inference in Denoising Diffusion Models via MMD Finetuning
Emanuele Aiello
D. Valsesia
E. Magli
DiffM
22
4
0
19 Jan 2023
Can We Find Strong Lottery Tickets in Generative Models?
Can We Find Strong Lottery Tickets in Generative Models?
Sangyeop Yeo
Yoojin Jang
Jy-yong Sohn
Dongyoon Han
Jaejun Yoo
20
6
0
16 Dec 2022
Effective Dynamics of Generative Adversarial Networks
Effective Dynamics of Generative Adversarial Networks
S. Durr
Youssef Mroueh
Yuhai Tu
Shenshen Wang
GAN
38
4
0
08 Dec 2022
DigGAN: Discriminator gradIent Gap Regularization for GAN Training with
  Limited Data
DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data
Tiantian Fang
Ruoyu Sun
A. Schwing
GAN
30
16
0
27 Nov 2022
Learning Compact Features via In-Training Representation Alignment
Learning Compact Features via In-Training Representation Alignment
X. Li
Xiangrui Li
Deng Pan
Yao Qiang
D. Zhu
OOD
8
3
0
23 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
30
48
0
16 Nov 2022
MMD-B-Fair: Learning Fair Representations with Statistical Testing
MMD-B-Fair: Learning Fair Representations with Statistical Testing
Namrata Deka
Danica J. Sutherland
20
7
0
15 Nov 2022
Camera Alignment and Weighted Contrastive Learning for Domain Adaptation
  in Video Person ReID
Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person ReID
Djebril Mekhazni
Maximilien Dufau
Christian Desrosiers
M. Pedersoli
Eric Granger
44
8
0
07 Nov 2022
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
32
10
0
28 Oct 2022
Anisotropic multiresolution analyses for deepfake detection
Anisotropic multiresolution analyses for deepfake detection
Wei Huang
Michelangelo Valsecchi
Michael Multerer
AAML
26
5
0
26 Oct 2022
Deep Semantic Statistics Matching (D2SM) Denoising Network
Deep Semantic Statistics Matching (D2SM) Denoising Network
Kangfu Mei
Vishal M. Patel
Rui Huang
DiffM
21
8
0
19 Jul 2022
How Robust is Your Fairness? Evaluating and Sustaining Fairness under
  Unseen Distribution Shifts
How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts
Haotao Wang
Junyuan Hong
Jiayu Zhou
Zhangyang Wang
OOD
60
11
0
04 Jul 2022
On making optimal transport robust to all outliers
On making optimal transport robust to all outliers
Kilian Fatras
OT
24
0
0
23 Jun 2022
Functional Ensemble Distillation
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
37
2
0
05 Jun 2022
RCC-GAN: Regularized Compound Conditional GAN for Large-Scale Tabular
  Data Synthesis
RCC-GAN: Regularized Compound Conditional GAN for Large-Scale Tabular Data Synthesis
Mohammad Esmaeilpour
Nourhene Chaalia
Adel Abusitta
François-Xavier Devailly
Wissem Maazoun
P. Cardinal
GAN
25
2
0
24 May 2022
Conditional Born machine for Monte Carlo event generation
Conditional Born machine for Monte Carlo event generation
Oriel Kiss
Michele Grossi
E. Kajomovitz
S. Vallecorsa
41
14
0
16 May 2022
Synthetic Data -- what, why and how?
Synthetic Data -- what, why and how?
James Jordon
Lukasz Szpruch
F. Houssiau
M. Bottarelli
Giovanni Cherubin
Carsten Maple
Samuel N. Cohen
Adrian Weller
48
109
0
06 May 2022
Heterogeneous Domain Adaptation with Adversarial Neural Representation
  Learning: Experiments on E-Commerce and Cybersecurity
Heterogeneous Domain Adaptation with Adversarial Neural Representation Learning: Experiments on E-Commerce and Cybersecurity
Mohammadreza Ebrahimi
Yidong Chai
Hao Helen Zhang
Hsinchun Chen
16
9
0
05 May 2022
PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
  differential equations
PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic differential equations
Weiheng Zhong
Hadi Meidani
DRL
30
37
0
21 Mar 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
36
25
0
20 Mar 2022
Rates of convergence for nonparametric estimation of singular
  distributions using generative adversarial networks
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
32
4
0
07 Feb 2022
Depth and Feature Learning are Provably Beneficial for Neural Network
  Discriminators
Depth and Feature Learning are Provably Beneficial for Neural Network Discriminators
Carles Domingo-Enrich
MLT
MDE
31
0
0
27 Dec 2021
Manifold Learning Benefits GANs
Manifold Learning Benefits GANs
Yao Ni
Piotr Koniusz
Richard I. Hartley
Richard Nock
GAN
31
16
0
23 Dec 2021
1234
Next