ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04389
  4. Cited By
Bayesian Optimization with Gradients
v1v2v3 (latest)

Bayesian Optimization with Gradients

13 March 2017
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
ArXiv (abs)PDFHTML

Papers citing "Bayesian Optimization with Gradients"

42 / 92 papers shown
Title
Excursion Search for Constrained Bayesian Optimization under a Limited
  Budget of Failures
Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures
A. Marco
Alexander von Rohr
Dominik Baumann
José Miguel Hernández-Lobato
Sebastian Trimpe
45
7
0
15 May 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
125
106
0
08 May 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
  Gaussian Process Regression with Derivatives
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
BDL
70
3
0
05 Mar 2020
Information Directed Sampling for Linear Partial Monitoring
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
92
46
0
25 Feb 2020
Weighting Is Worth the Wait: Bayesian Optimization with Importance
  Sampling
Weighting Is Worth the Wait: Bayesian Optimization with Importance Sampling
Setareh Ariafar
Zelda E. Mariet
Ehsan Elhamifar
Dana Brooks
Jennifer Dy
Jasper Snoek
50
3
0
23 Feb 2020
Static and Dynamic Values of Computation in MCTS
Static and Dynamic Values of Computation in MCTS
Eren Sezener
Peter Dayan
76
5
0
11 Feb 2020
Uncertainty Quantification for Bayesian Optimization
Uncertainty Quantification for Bayesian Optimization
Rui Tuo
Wei Cao
UQCV
55
5
0
04 Feb 2020
Gradient-based Optimization for Bayesian Preference Elicitation
Gradient-based Optimization for Bayesian Preference Elicitation
Ivan Vendrov
Tyler Lu
Qingqing Huang
Craig Boutilier
BDL
55
23
0
20 Nov 2019
Bayesian Optimization Allowing for Common Random Numbers
Bayesian Optimization Allowing for Common Random Numbers
Michael Pearce
Matthias Poloczek
Juergen Branke
BDL
53
23
0
21 Oct 2019
Dynamic Subgoal-based Exploration via Bayesian Optimization
Dynamic Subgoal-based Exploration via Bayesian Optimization
Yijia Wang
Matthias Poloczek
Daniel R. Jiang
76
3
0
21 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
66
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
100
474
0
03 Oct 2019
Deep kernel learning for integral measurements
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
62
7
0
04 Sep 2019
A tree-based radial basis function method for noisy parallel surrogate
  optimization
A tree-based radial basis function method for noisy parallel surrogate optimization
Chenchao Shou
Matthew West
60
2
0
21 Aug 2019
BISTRO: Berkeley Integrated System for Transportation Optimization
BISTRO: Berkeley Integrated System for Transportation Optimization
Sidney A. Feygin
Jessica R. Lazarus
E. Forscher
Valentine Golfier-Vetterli
Jonathan W. Lee
Abhishek Gupta
Rashid A. Waraich
C. Sheppard
Alexandre M. Bayen
35
8
0
10 Aug 2019
Automatic Calibration of Dynamic and Heterogeneous Parameters in
  Agent-based Model
Automatic Calibration of Dynamic and Heterogeneous Parameters in Agent-based Model
Dongjun Kim
Tae-Sub Yun
Il-Chul Moon
13
3
0
09 Aug 2019
pySOT and POAP: An event-driven asynchronous framework for surrogate
  optimization
pySOT and POAP: An event-driven asynchronous framework for surrogate optimization
David Eriksson
D. Bindel
C. Shoemaker
75
56
0
30 Jul 2019
Accelerating Experimental Design by Incorporating Experimenter Hunches
Accelerating Experimental Design by Incorporating Experimenter Hunches
Cheng Li
Santu Rana
Sunil R. Gupta
Vu Nguyen
Svetha Venkatesh
...
David Rubín de Celis Leal
Teo Slezak
Murray Height
M. Mohammed
I. Gibson
75
33
0
22 Jul 2019
Learning Effective Loss Functions Efficiently
Learning Effective Loss Functions Efficiently
Matthew J. Streeter
46
8
0
28 Jun 2019
Knowledge Gradient for Selection with Covariates: Consistency and
  Computation
Knowledge Gradient for Selection with Covariates: Consistency and Computation
Liang Ding
L. Hong
Haihui Shen
Xiaowei Zhang
BDL
100
27
0
12 Jun 2019
Graduated Optimization of Black-Box Functions
Graduated Optimization of Black-Box Functions
Weijia Shao
C. Geißler
F. Sivrikaya
56
2
0
04 Jun 2019
Learning Personalized Thermal Preferences via Bayesian Active Learning
  with Unimodality Constraints
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
Ilias Bilionis
Xiaoqi Liu
P. Karava
Athanasios Tzempelikos
AI4TSAI4CE
55
2
0
21 Mar 2019
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
Jian Wu
Saul Toscano-Palmerin
P. Frazier
A. Wilson
67
132
0
12 Mar 2019
Active learning for enumerating local minima based on Gaussian process
  derivatives
Active learning for enumerating local minima based on Gaussian process derivatives
Yu Inatsu
Daisuke Sugita
K. Toyoura
Ichiro Takeuchi
48
6
0
08 Mar 2019
Low-pass filtering as Bayesian inference
Low-pass filtering as Bayesian inference
Cristobal Valenzuela
Felipe A. Tobar
AI4TS
34
2
0
09 Feb 2019
Bayesian optimization in ab initio nuclear physics
Bayesian optimization in ab initio nuclear physics
A. Ekström
C. Forssén
Christos Dimitrakakis
D. Dubhashi
H. Johansson
A. Muhammad
H. Salomonsson
Alexander Schliep
46
30
0
03 Feb 2019
Combinatorial Bayesian Optimization using the Graph Cartesian Product
Combinatorial Bayesian Optimization using the Graph Cartesian Product
Changyong Oh
Jakub M. Tomczak
E. Gavves
Max Welling
95
108
0
01 Feb 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic
  Programming Language
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
Willie Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric Xing
94
18
0
31 Jan 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
100
10
0
18 Dec 2018
Using Known Information to Accelerate HyperParameters Optimization Based
  on SMBO
Using Known Information to Accelerate HyperParameters Optimization Based on SMBO
Daning Cheng
Hanping Zhang
Xia Fen
Shigang Li
Yunquan Zhang
22
0
0
08 Nov 2018
Computing the Value of Computation for Planning
Computing the Value of Computation for Planning
Can Eren Sezener
19
0
0
07 Nov 2018
A Batched Scalable Multi-Objective Bayesian Optimization Algorithm
A Batched Scalable Multi-Objective Bayesian Optimization Algorithm
Xi Lin
Hui-Ling Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
51
11
0
04 Nov 2018
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
60
76
0
29 Oct 2018
Combining Bayesian Optimization and Lipschitz Optimization
Combining Bayesian Optimization and Lipschitz Optimization
Mohamed Osama Ahmed
Sharan Vaswani
Mark Schmidt
61
22
0
10 Oct 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
118
1,803
0
08 Jul 2018
Maximizing acquisition functions for Bayesian optimization
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
153
250
0
25 May 2018
Neural Generative Models for Global Optimization with Gradients
Neural Generative Models for Global Optimization with Gradients
Louis Faury
Flavian Vasile
Clément Calauzènes
Olivier Fercoq
16
2
0
22 May 2018
Improving Quadrature for Constrained Integrands
Improving Quadrature for Constrained Integrands
Henry Chai
Roman Garnett
TPM
79
27
0
13 Feb 2018
Discretization-free Knowledge Gradient Methods for Bayesian Optimization
Jian Wu
P. Frazier
BDL
51
9
0
20 Jul 2017
Correcting boundary over-exploration deficiencies in Bayesian
  optimization with virtual derivative sign observations
Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations
E. Siivola
Aki Vehtari
J. Vanhatalo
Javier I. González
Michael Riis Andersen
61
26
0
04 Apr 2017
Exploiting gradients and Hessians in Bayesian optimization and Bayesian
  quadrature
Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature
Anqi Wu
Mikio C. Aoi
Jonathan W. Pillow
73
41
0
31 Mar 2017
Multi-Information Source Optimization
Multi-Information Source Optimization
Matthias Poloczek
Jialei Wang
P. Frazier
104
198
0
01 Mar 2016
Previous
12