ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03322
17
0

Using Known Information to Accelerate HyperParameters Optimization Based on SMBO

8 November 2018
Daning Cheng
Hanping Zhang
Xia Fen
Shigang Li
Yunquan Zhang
ArXivPDFHTML
Abstract

Automl is the key technology for machine learning problem. Current state of art hyperparameter optimization methods are based on traditional black-box optimization methods like SMBO (SMAC, TPE). The objective function of black-box optimization is non-smooth, or time-consuming to evaluate, or in some way noisy. Recent years, many researchers offered the work about the properties of hyperparameters. However, traditional hyperparameter optimization methods do not take those information into consideration. In this paper, we use gradient information and machine learning model analysis information to accelerate traditional hyperparameter optimization methods SMBO. In our L2 norm experiments, our method yielded state-of-the-art performance, and in many cases outperformed the previous best configuration approach.

View on arXiv
Comments on this paper