ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.03400
  4. Cited By
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
v1v2v3 (latest)

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

9 March 2017
Chelsea Finn
Pieter Abbeel
Sergey Levine
    OOD
ArXiv (abs)PDFHTML

Papers citing "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks"

50 / 5,503 papers shown
Title
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic
  Tasks involving Complex Dynamics
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic Tasks involving Complex Dynamics
J. Baar
Alan Sullivan
Radu Cordorel
Devesh K. Jha
Diego Romeres
D. Nikovski
116
57
0
13 Sep 2018
VPE: Variational Policy Embedding for Transfer Reinforcement Learning
VPE: Variational Policy Embedding for Transfer Reinforcement Learning
Isac Arnekvist
Danica Kragic
J. A. Stork
OffRL
57
37
0
10 Sep 2018
Learning Invariances for Policy Generalization
Learning Invariances for Policy Generalization
Rémi Tachet des Combes
Philip Bachman
H. V. Seijen
83
12
0
07 Sep 2018
Deep Learning for Generic Object Detection: A Survey
Deep Learning for Generic Object Detection: A Survey
Li Liu
Wanli Ouyang
Xiaogang Wang
Paul Fieguth
Jie Chen
Xinwang Liu
M. Pietikäinen
ObjDVLMOOD
238
2,467
0
06 Sep 2018
Deep Bilevel Learning
Deep Bilevel Learning
Simon Jenni
Paolo Favaro
NoLa
74
115
0
05 Sep 2018
One-Shot Relational Learning for Knowledge Graphs
One-Shot Relational Learning for Knowledge Graphs
Wenhan Xiong
Mo Yu
Shiyu Chang
Xiaoxiao Guo
William Yang Wang
116
220
0
27 Aug 2018
Meta-Learning for Low-Resource Neural Machine Translation
Meta-Learning for Low-Resource Neural Machine Translation
Jiatao Gu
Yong Wang
Yun Chen
Kyunghyun Cho
Victor O.K. Li
93
343
0
25 Aug 2018
Transfer Learning for Estimating Causal Effects using Neural Networks
Transfer Learning for Estimating Causal Effects using Neural Networks
Sören R. Künzel
Bradly C. Stadie
N. Vemuri
V. Ramakrishnan
Jasjeet Sekhon
Pieter Abbeel
CML
49
32
0
23 Aug 2018
Improving Generalization via Scalable Neighborhood Component Analysis
Improving Generalization via Scalable Neighborhood Component Analysis
Zhirong Wu
Alexei A. Efros
Stella X. Yu
BDL
62
146
0
14 Aug 2018
Small Sample Learning in Big Data Era
Small Sample Learning in Big Data Era
Jun Shu
Zongben Xu
Deyu Meng
108
72
0
14 Aug 2018
Saliency for Fine-grained Object Recognition in Domains with Scarce
  Training Data
Saliency for Fine-grained Object Recognition in Domains with Scarce Training Data
Carola Figueroa Flores
Abel Gonzalez-Garcia
Joost van de Weijer
Bogdan Raducanu
122
50
0
01 Aug 2018
On-line Adaptative Curriculum Learning for GANs
On-line Adaptative Curriculum Learning for GANs
T. Doan
João Monteiro
Isabela Albuquerque
Bogdan Mazoure
A. Durand
Joelle Pineau
R. Devon Hjelm
124
42
0
31 Jul 2018
Fine-Grained Visual Categorization using Meta-Learning Optimization with
  Sample Selection of Auxiliary Data
Fine-Grained Visual Categorization using Meta-Learning Optimization with Sample Selection of Auxiliary Data
Yabin Zhang
Hui Tang
Kui Jia
111
95
0
28 Jul 2018
Few Shot Learning with Simplex
Bowen Zhang
Xifan Zhang
Fan Cheng
Deli Zhao
19
1
0
27 Jul 2018
Meta-learning autoencoders for few-shot prediction
Meta-learning autoencoders for few-shot prediction
Tailin Wu
J. Peurifoy
Isaac L. Chuang
Max Tegmark
47
22
0
26 Jul 2018
Learning Plannable Representations with Causal InfoGAN
Learning Plannable Representations with Causal InfoGAN
Thanard Kurutach
Aviv Tamar
Ge Yang
Stuart J. Russell
Pieter Abbeel
GANDRL
82
181
0
24 Jul 2018
The Variational Homoencoder: Learning to learn high capacity generative
  models from few examples
The Variational Homoencoder: Learning to learn high capacity generative models from few examples
Luke B. Hewitt
Maxwell Nye
Andreea Gane
Tommi Jaakkola
J. Tenenbaum
BDLDRLGAN
88
68
0
24 Jul 2018
Meta-Learning Priors for Efficient Online Bayesian Regression
Meta-Learning Priors for Efficient Online Bayesian Regression
James Harrison
Apoorva Sharma
Marco Pavone
BDL
84
102
0
24 Jul 2018
General Value Function Networks
General Value Function Networks
M. Schlegel
Andrew Jacobsen
Zaheer Abbas
Andrew Patterson
Adam White
Martha White
69
30
0
18 Jul 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
168
1,374
0
16 Jul 2018
Metalearning with Hebbian Fast Weights
Metalearning with Hebbian Fast Weights
Tsendsuren Munkhdalai
Adam Trischler
VLMFedML
75
37
0
12 Jul 2018
Automatically Composing Representation Transformations as a Means for
  Generalization
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas Griffiths
85
70
0
12 Jul 2018
Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video
  Demonstration
Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration
De-An Huang
Suraj Nair
Danfei Xu
Yuke Zhu
Animesh Garg
Li Fei-Fei
Silvio Savarese
Juan Carlos Niebles
98
140
0
10 Jul 2018
Large Margin Few-Shot Learning
Large Margin Few-Shot Learning
Yong Wang
Xiao-Ming Wu
Qimai Li
Jiatao Gu
Wangmeng Xiang
Lei Zhang
Victor O.K. Li
MQ
90
29
0
08 Jul 2018
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
I. Laradji
Reza Babanezhad
64
40
0
06 Jul 2018
A survey on policy search algorithms for learning robot controllers in a
  handful of trials
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
103
155
0
06 Jul 2018
Variance Reduction for Reinforcement Learning in Input-Driven
  Environments
Variance Reduction for Reinforcement Learning in Input-Driven Environments
Hongzi Mao
S. Venkatakrishnan
Malte Schwarzkopf
Mohammad Alizadeh
OffRL
98
95
0
06 Jul 2018
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDLUQCVGP
113
517
0
04 Jul 2018
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
94
708
0
04 Jul 2018
Modular meta-learning
Modular meta-learning
Ferran Alet
Tomás Lozano-Pérez
L. Kaelbling
OffRL
78
123
0
26 Jun 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
214
4,380
0
24 Jun 2018
The Natural Language Decathlon: Multitask Learning as Question Answering
The Natural Language Decathlon: Multitask Learning as Question Answering
Bryan McCann
N. Keskar
Caiming Xiong
R. Socher
AIMatMLLMBDL
161
647
0
20 Jun 2018
Uncertainty in Multitask Transfer Learning
Uncertainty in Multitask Transfer Learning
Alexandre Lacoste
Boris N. Oreshkin
Wonchang Chung
Thomas Boquet
Negar Rostamzadeh
David M. Krueger
BDLUQCVSSL
105
21
0
20 Jun 2018
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization
  and Meta-Learning
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
P. Frasconi
42
2
0
13 Jun 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
187
732
0
13 Jun 2018
Delta-encoder: an effective sample synthesis method for few-shot object
  recognition
Delta-encoder: an effective sample synthesis method for few-shot object recognition
Eli Schwartz
Leonid Karlinsky
J. Shtok
Sivan Harary
Mattias Marder
Rogerio Feris
Abhishek Kumar
Raja Giryes
A. Bronstein
255
357
0
12 Jun 2018
RepMet: Representative-based metric learning for classification and
  one-shot object detection
RepMet: Representative-based metric learning for classification and one-shot object detection
Leonid Karlinsky
J. Shtok
Sivan Harary
Eli Schwartz
Mattias Marder
Rogerio Feris
Raja Giryes
A. Bronstein
VLMObjD
145
320
0
12 Jun 2018
Unsupervised Meta-Learning for Reinforcement Learning
Unsupervised Meta-Learning for Reinforcement Learning
Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
SSLOffRL
136
107
0
12 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
113
44
0
12 Jun 2018
PAC-Bayes Control: Learning Policies that Provably Generalize to Novel
  Environments
PAC-Bayes Control: Learning Policies that Provably Generalize to Novel Environments
Anirudha Majumdar
M. Goldstein
Anoopkumar Sonar
104
18
0
11 Jun 2018
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCVBDL
309
504
0
11 Jun 2018
Auto-Meta: Automated Gradient Based Meta Learner Search
Auto-Meta: Automated Gradient Based Meta Learner Search
Jaehong Kim
Sangyeul Lee
Sungwan Kim
Moonsu Cha
Jung Kwon Lee
Youngduck Choi
Yongseok Choi
Dong-Yeon Cho
Jiwon Kim
AI4CE
73
39
0
11 Jun 2018
Adversarial Meta-Learning
Adversarial Meta-Learning
Chengxiang Yin
Jian Tang
Zhiyuan Xu
Yanzhi Wang
95
42
0
08 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
310
674
0
07 Jun 2018
Meta-Learning by the Baldwin Effect
Meta-Learning by the Baldwin Effect
Chrisantha Fernando
Jakub Sygnowski
Simon Osindero
Jane X. Wang
Tom Schaul
Denis Teplyashin
Pablo Sprechmann
Alexander Pritzel
Andrei A. Rusu
87
39
0
06 Jun 2018
Deep Mixed Effect Model using Gaussian Processes: A Personalized and
  Reliable Prediction for Healthcare
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
Ingyo Chung
Saehoon Kim
Juho Lee
Kwang Joon Kim
Sung Ju Hwang
Eunho Yang
BDLFedML
82
16
0
05 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
888
3,129
0
04 Jun 2018
Meta-Learner with Linear Nulling
Meta-Learner with Linear Nulling
Sung Whan Yoon
Jun Seo
Jaekyun Moon
31
1
0
04 Jun 2018
Learning a Prior over Intent via Meta-Inverse Reinforcement Learning
Learning a Prior over Intent via Meta-Inverse Reinforcement Learning
Kelvin Xu
Ellis Ratner
Anca Dragan
Sergey Levine
Chelsea Finn
111
65
0
31 May 2018
Training Medical Image Analysis Systems like Radiologists
Training Medical Image Analysis Systems like Radiologists
Gabriel Maicas
A. Bradley
Jacinto C. Nascimento
Ian Reid
G. Carneiro
79
55
0
28 May 2018
Previous
123...107108109110111
Next