ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.03400
896
12002
v1v2v3 (latest)

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

9 March 2017
Chelsea Finn
Pieter Abbeel
Sergey Levine
    OOD
ArXiv (abs)PDFHTML
Abstract

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on a few-shot image classification benchmark, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

View on arXiv
Comments on this paper