ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10166
14
120

Modular meta-learning

26 June 2018
Ferran Alet
Tomás Lozano-Pérez
L. Kaelbling
    OffRL
ArXivPDFHTML
Abstract

Many prediction problems, such as those that arise in the context of robotics, have a simplifying underlying structure that, if known, could accelerate learning. In this paper, we present a strategy for learning a set of neural network modules that can be combined in different ways. We train different modular structures on a set of related tasks and generalize to new tasks by composing the learned modules in new ways. By reusing modules to generalize we achieve combinatorial generalization, akin to the "infinite use of finite means" displayed in language. Finally, we show this improves performance in two robotics-related problems.

View on arXiv
Comments on this paper