ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01961
  4. Cited By
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks

Multiplicative Normalizing Flows for Variational Bayesian Neural Networks

6 March 2017
Christos Louizos
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Multiplicative Normalizing Flows for Variational Bayesian Neural Networks"

50 / 114 papers shown
Title
Neural Bootstrapper
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCV
BDL
22
7
0
02 Oct 2020
Repulsive Attention: Rethinking Multi-head Attention as Bayesian
  Inference
Repulsive Attention: Rethinking Multi-head Attention as Bayesian Inference
Bang An
Jie Lyu
Zhenyi Wang
Chunyuan Li
Changwei Hu
Fei Tan
Ruiyi Zhang
Yifan Hu
Changyou Chen
AAML
22
28
0
20 Sep 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
28
16
0
17 Aug 2020
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep
  Ensembles
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
21
36
0
19 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
24
19
0
10 Jul 2020
Quantifying and Leveraging Predictive Uncertainty for Medical Image
  Assessment
Quantifying and Leveraging Predictive Uncertainty for Medical Image Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Awais Mansoor
Y. Yoo
Eli Gibson
...
Ramandeep Singh
S. Digumarthy
M. Kalra
Sasa Grbic
Dorin Comaniciu
UQCV
EDL
23
55
0
08 Jul 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCV
BDL
OOD
28
38
0
26 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
37
199
0
22 Jun 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
32
18
0
20 Jun 2020
On the Optimal Weighted $\ell_2$ Regularization in Overparameterized
  Linear Regression
On the Optimal Weighted ℓ2\ell_2ℓ2​ Regularization in Overparameterized Linear Regression
Denny Wu
Ji Xu
33
121
0
10 Jun 2020
Uncertainty-Aware Deep Classifiers using Generative Models
Uncertainty-Aware Deep Classifiers using Generative Models
Murat Sensoy
Lance M. Kaplan
Federico Cerutti
Maryam Saleki
UQCV
OOD
22
73
0
07 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
33
314
0
15 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples
OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples
Changjian Chen
Jun Yuan
Yafeng Lu
Yang Liu
Hang Su
Songtao Yuan
Shixia Liu
OODD
26
63
0
08 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
66
426
0
26 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
62
1,631
0
05 Dec 2019
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OOD
UQCV
29
619
0
05 Dec 2019
Bayesian Graph Convolutional Neural Networks using Node Copying
Bayesian Graph Convolutional Neural Networks using Node Copying
Soumyasundar Pal
Florence Regol
Mark J. Coates
BDL
GNN
33
12
0
08 Nov 2019
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adria Ruiz
Jakob Verbeek
VLM
30
22
0
19 Aug 2019
Unsupervised Domain Adaptation via Calibrating Uncertainties
Unsupervised Domain Adaptation via Calibrating Uncertainties
Ligong Han
Yang Zou
Ruijiang Gao
Lezi Wang
Dimitris N. Metaxas
19
30
0
25 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
32
113
0
24 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
27
8
0
10 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
29
745
0
10 Jun 2019
Analyzing the Role of Model Uncertainty for Electronic Health Records
Analyzing the Role of Model Uncertainty for Electronic Health Records
Michael W. Dusenberry
Dustin Tran
Edward Choi
Jonas Kemp
Jeremy Nixon
Ghassen Jerfel
Katherine A. Heller
Andrew M. Dai
18
117
0
10 Jun 2019
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep
  Networks
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
Aryan Mobiny
H. Nguyen
S. Moulik
Naveen Garg
Carol C. Wu
UQCV
BDL
20
155
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
47
1,658
0
06 Jun 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
32
8
0
23 May 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
Calibration of Encoder Decoder Models for Neural Machine Translation
Calibration of Encoder Decoder Models for Neural Machine Translation
Aviral Kumar
Sunita Sarawagi
27
98
0
03 Mar 2019
Hypernetwork functional image representation
Hypernetwork functional image representation
Sylwester Klocek
Lukasz Maziarka
Maciej Wołczyk
Jacek Tabor
Jakub Nowak
Marek Śmieja
SupR
3DH
24
90
0
27 Feb 2019
Emerging Convolutions for Generative Normalizing Flows
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
24
98
0
30 Jan 2019
Knowing what you know in brain segmentation using Bayesian deep neural
  networks
Knowing what you know in brain segmentation using Bayesian deep neural networks
Patrick McClure
Nao Rho
J. Lee
Jakub R. Kaczmarzyk
C. Zheng
Satrajit S. Ghosh
D. Nielson
Adam G. Thomas
P. Bandettini
Francisco Pereira
UQCV
3DV
BDL
24
52
0
03 Dec 2018
Bayesian graph convolutional neural networks for semi-supervised
  classification
Bayesian graph convolutional neural networks for semi-supervised classification
Yingxue Zhang
Soumyasundar Pal
Mark J. Coates
Deniz Üstebay
GNN
BDL
21
227
0
27 Nov 2018
Agent Embeddings: A Latent Representation for Pole-Balancing Networks
Agent Embeddings: A Latent Representation for Pole-Balancing Networks
Oscar Chang
Robert Kwiatkowski
Siyuan Chen
Hod Lipson
27
6
0
12 Nov 2018
Good Initializations of Variational Bayes for Deep Models
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
17
21
0
18 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Probabilistic Meta-Representations Of Neural Networks
Probabilistic Meta-Representations Of Neural Networks
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
BDL
12
27
0
01 Oct 2018
Boosting Trust Region Policy Optimization by Normalizing Flows Policy
Boosting Trust Region Policy Optimization by Normalizing Flows Policy
Yunhao Tang
Shipra Agrawal
TPM
30
29
0
27 Sep 2018
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
19
506
0
04 Jul 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
25
114
0
02 Jul 2018
Uncertainty in Multitask Transfer Learning
Uncertainty in Multitask Transfer Learning
Alexandre Lacoste
Boris N. Oreshkin
Wonchang Chung
Thomas Boquet
Negar Rostamzadeh
David M. Krueger
BDL
UQCV
SSL
24
21
0
20 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
38
44
0
12 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
90
953
0
05 Jun 2018
Previous
123
Next