ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01961
  4. Cited By
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks

Multiplicative Normalizing Flows for Variational Bayesian Neural Networks

6 March 2017
Christos Louizos
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Multiplicative Normalizing Flows for Variational Bayesian Neural Networks"

50 / 102 papers shown
Title
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
92
0
0
25 Apr 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
64
0
0
03 Jan 2025
Uncertainty Quantification with Bayesian Higher Order ReLU KANs
Uncertainty Quantification with Bayesian Higher Order ReLU KANs
J. Giroux
Cristiano Fanelli
UQCV
40
1
0
02 Oct 2024
Unmasking Social Bots: How Confident Are We?
Unmasking Social Bots: How Confident Are We?
J. Giroux
Ariyarathne Gangani
Alexander C. Nwala
C. Fanelli
31
1
0
18 Jul 2024
Improving robustness to corruptions with multiplicative weight
  perturbations
Improving robustness to corruptions with multiplicative weight perturbations
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
44
0
0
24 Jun 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
HyperFast: Instant Classification for Tabular Data
HyperFast: Instant Classification for Tabular Data
David Bonet
D. M. Montserrat
Xavier Giró-i-Nieto
A. Ioannidis
46
15
0
22 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
36
5
0
02 Feb 2024
Uncertainty Visualization via Low-Dimensional Posterior Projections
Uncertainty Visualization via Low-Dimensional Posterior Projections
Omer Yair
E. Nehme
T. Michaeli
UQCV
38
2
0
12 Dec 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
26
1
0
10 Oct 2023
Failure Detection for Motion Prediction of Autonomous Driving: An
  Uncertainty Perspective
Failure Detection for Motion Prediction of Autonomous Driving: An Uncertainty Perspective
Wenbo Shao
Yan Xu
Liang Peng
Jun Li
Hong Wang
32
15
0
11 Jan 2023
Constraining cosmological parameters from N-body simulations with
  Variational Bayesian Neural Networks
Constraining cosmological parameters from N-body simulations with Variational Bayesian Neural Networks
Héctor J. Hortúa
L. '. García
Leonardo Castañeda C.
BDL
24
4
0
09 Jan 2023
Annealing Double-Head: An Architecture for Online Calibration of Deep
  Neural Networks
Annealing Double-Head: An Architecture for Online Calibration of Deep Neural Networks
Erdong Guo
D. Draper
Maria de Iorio
35
0
0
27 Dec 2022
Bayesian posterior approximation with stochastic ensembles
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Copula Conformal Prediction for Multi-step Time Series Forecasting
Copula Conformal Prediction for Multi-step Time Series Forecasting
S. Sun
Rose Yu
AI4TS
29
22
0
06 Dec 2022
What's Behind the Mask: Estimating Uncertainty in Image-to-Image
  Problems
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
Gilad Kutiel
Regev Cohen
Michael Elad
Daniel Freedman
UQCV
27
5
0
28 Nov 2022
ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial
  Viewpoints
ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial Viewpoints
Yinpeng Dong
Shouwei Ruan
Hang Su
Cai Kang
Xingxing Wei
Junyi Zhu
AAML
30
49
0
08 Oct 2022
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A
  Survey
Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A Survey
S. Sun
AI4CE
38
10
0
08 Sep 2022
Density Regression and Uncertainty Quantification with Bayesian Deep
  Noise Neural Networks
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
35
2
0
12 Jun 2022
Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born
  Machines
Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born Machines
I. Nikoloska
Osvaldo Simeone
AI4CE
11
3
0
31 Mar 2022
A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification
  with Rejection from ECG Recordings
A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification with Rejection from ECG Recordings
Wen-Rang Zhang
Xinxin Di
Guodong Wei
Shijia Geng
Zhaoji Fu
linda Qiao
UQCV
BDL
11
2
0
26 Feb 2022
AdaAnn: Adaptive Annealing Scheduler for Probability Density
  Approximation
AdaAnn: Adaptive Annealing Scheduler for Probability Density Approximation
Emma R. Cobian
J. Hauenstein
Fang Liu
Daniele E. Schiavazzi
19
4
0
01 Feb 2022
GradTail: Learning Long-Tailed Data Using Gradient-based Sample
  Weighting
GradTail: Learning Long-Tailed Data Using Gradient-based Sample Weighting
Zhao Chen
Vincent Casser
Henrik Kretzschmar
Dragomir Anguelov
28
5
0
16 Jan 2022
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
23
1
0
21 Nov 2021
Interactive Medical Image Segmentation with Self-Adaptive Confidence
  Calibration
Interactive Medical Image Segmentation with Self-Adaptive Confidence Calibration
Wenhao Li
Qisen Xu
Chuyun Shen
Bin Hu
Fengping Zhu
Yuxin Li
Bo Jin
Xiangfeng Wang
30
5
0
15 Nov 2021
Is MC Dropout Bayesian?
Is MC Dropout Bayesian?
Loic Le Folgoc
V. Baltatzis
S. Desai
A. Devaraj
S. Ellis
O. M. Manzanera
A. Nair
Huaqi Qiu
J. Schnabel
Ben Glocker
BDL
OOD
UQCV
30
39
0
08 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
34
9
0
08 Oct 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OOD
MU
BDL
28
6
0
01 Oct 2021
Introspective Robot Perception using Smoothed Predictions from Bayesian
  Neural Networks
Introspective Robot Perception using Smoothed Predictions from Bayesian Neural Networks
Jianxiang Feng
M. Durner
Zoltán-Csaba Márton
Ferenc Bálint-Benczédi
Rudolph Triebel
UQCV
BDL
13
11
0
27 Sep 2021
Uncertainty-Aware Reliable Text Classification
Uncertainty-Aware Reliable Text Classification
Yibo Hu
Latifur Khan
EDL
UQCV
33
33
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
59
1,111
0
07 Jul 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
16
0
0
01 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
UQCV
OOD
29
39
0
09 May 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
35
15
0
27 Apr 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
100
17
0
23 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
38
1
0
28 Mar 2021
LiBRe: A Practical Bayesian Approach to Adversarial Detection
LiBRe: A Practical Bayesian Approach to Adversarial Detection
Zhijie Deng
Xiao Yang
Shizhen Xu
Hang Su
Jun Zhu
BDL
AAML
20
61
0
27 Mar 2021
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
Xinjie Fan
Shujian Zhang
Korawat Tanwisuth
Xiaoning Qian
Mingyuan Zhou
OOD
BDL
UQCV
30
27
0
06 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
U-LanD: Uncertainty-Driven Video Landmark Detection
U-LanD: Uncertainty-Driven Video Landmark Detection
Mohammad Jafari
C. Luong
Michael Y. Tsang
A. Gu
N. V. Woudenberg
R. Rohling
T. Tsang
Purang Abolmaesumi
37
12
0
02 Feb 2021
Multidimensional Uncertainty-Aware Evidential Neural Networks
Multidimensional Uncertainty-Aware Evidential Neural Networks
Yibo Hu
Yuzhe Ou
Xujiang Zhao
Jin-Hee Cho
Feng Chen
EDL
UQCV
AAML
33
23
0
26 Dec 2020
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution
  Data
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
Haoming Jiang
Yuchen Zhuang
Jie Lyu
T. Zhao
Chao Zhang
OODD
24
26
0
22 Oct 2020
Failure Prediction by Confidence Estimation of Uncertainty-Aware
  Dirichlet Networks
Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks
Theodoros Tsiligkaridis
UQCV
22
7
0
19 Oct 2020
Neural Bootstrapper
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCV
BDL
22
7
0
02 Oct 2020
Repulsive Attention: Rethinking Multi-head Attention as Bayesian
  Inference
Repulsive Attention: Rethinking Multi-head Attention as Bayesian Inference
Bang An
Jie Lyu
Zhenyi Wang
Chunyuan Li
Changwei Hu
Fei Tan
Ruiyi Zhang
Yifan Hu
Changyou Chen
AAML
19
28
0
20 Sep 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
28
16
0
17 Aug 2020
123
Next