ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01961
  4. Cited By
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks

Multiplicative Normalizing Flows for Variational Bayesian Neural Networks

6 March 2017
Christos Louizos
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Multiplicative Normalizing Flows for Variational Bayesian Neural Networks"

13 / 113 papers shown
Title
Sampling-Free Variational Inference of Bayesian Neural Networks by
  Variance Backpropagation
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
31
433
0
03 Apr 2018
Bayesian Incremental Learning for Deep Neural Networks
Bayesian Incremental Learning for Deep Neural Networks
Max Kochurov
T. Garipov
D. Podoprikhin
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
OOD
CLL
BDL
15
22
0
20 Feb 2018
Are Generative Classifiers More Robust to Adversarial Attacks?
Are Generative Classifiers More Robust to Adversarial Attacks?
Yingzhen Li
John Bradshaw
Yash Sharma
AAML
57
78
0
19 Feb 2018
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Mattias Teye
Hossein Azizpour
Kevin Smith
BDL
UQCV
28
239
0
18 Feb 2018
Uncertainty Estimation via Stochastic Batch Normalization
Uncertainty Estimation via Stochastic Batch Normalization
Andrei Atanov
Arsenii Ashukha
Dmitry Molchanov
Kirill Neklyudov
Dmitry Vetrov
UQCV
BDL
37
47
0
13 Feb 2018
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
70
873
0
26 Nov 2017
Implicit Weight Uncertainty in Neural Networks
Implicit Weight Uncertainty in Neural Networks
Nick Pawlowski
Andrew Brock
Matthew C. H. Lee
Martin Rajchl
Ben Glocker
BDL
UQCV
30
95
0
03 Nov 2017
Kernel Implicit Variational Inference
Kernel Implicit Variational Inference
Jiaxin Shi
Shengyang Sun
Jun Zhu
BDL
34
3
0
29 May 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
23
479
0
24 May 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
205
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
Previous
123