ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.05517
  4. Cited By
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications

PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications

19 January 2017
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
ArXiv (abs)PDFHTMLGithub (1943★)

Papers citing "PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications"

50 / 366 papers shown
Title
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
106
547
0
06 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
219
1,720
0
05 Dec 2019
Flow Contrastive Estimation of Energy-Based Models
Flow Contrastive Estimation of Energy-Based Models
Ruiqi Gao
Erik Nijkamp
Diederik P. Kingma
Zhen Xu
Andrew M. Dai
Ying Nian Wu
GAN
98
115
0
02 Dec 2019
Learning Likelihoods with Conditional Normalizing Flows
Learning Likelihoods with Conditional Normalizing Flows
Christina Winkler
Daniel E. Worrall
Emiel Hoogeboom
Max Welling
TPM
272
226
0
29 Nov 2019
A Case for the Score: Identifying Image Anomalies using Variational
  Autoencoder Gradients
A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
David Zimmerer
Jens Petersen
Simon A. A. Kohl
Klaus H. Maier-Hein
DRL
67
22
0
28 Nov 2019
Fine-grained Attention and Feature-sharing Generative Adversarial
  Networks for Single Image Super-Resolution
Fine-grained Attention and Feature-sharing Generative Adversarial Networks for Single Image Super-Resolution
Yitong Yan
Chuangchuang Liu
Changyou Chen
Xianfang Sun
Longcun Jin
Xiang Zhou
GAN
149
51
0
25 Nov 2019
DZip: improved general-purpose lossless compression based on novel
  neural network modeling
DZip: improved general-purpose lossless compression based on novel neural network modeling
Mohit Goyal
Kedar Tatwawadi
Shubham Chandak
Idoia Ochoa
AI4CE
43
24
0
08 Nov 2019
Convolutional Conditional Neural Processes
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
90
168
0
29 Oct 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
95
47
0
29 Oct 2019
Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Raza Habib
Soroosh Mariooryad
Matt Shannon
Eric Battenberg
RJ Skerry-Ryan
Daisy Stanton
David Kao
Tom Bagby
BDL
68
48
0
03 Oct 2019
Input complexity and out-of-distribution detection with likelihood-based
  generative models
Input complexity and out-of-distribution detection with likelihood-based generative models
Joan Serrà
David Álvarez
Vicencc Gómez
Olga Slizovskaia
José F. Núñez
Jordi Luque
OODD
166
277
0
25 Sep 2019
Understanding and Improving Virtual Adversarial Training
Understanding and Improving Virtual Adversarial Training
Dongha Kim
Yongchan Choi
Yongdai Kim
GANAAML
22
2
0
15 Sep 2019
Flow Models for Arbitrary Conditional Likelihoods
Flow Models for Arbitrary Conditional Likelihoods
Yongqian Li
Shoaib Akbar
Junier B. Oliva
OODAI4CE
76
40
0
13 Sep 2019
MRI Reconstruction Using Deep Bayesian Estimation
MRI Reconstruction Using Deep Bayesian Estimation
Guanxiong Luo
Na Zhao
Wenhao Jiang
E. Hui
Peng Cao
MedIm
104
60
0
03 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDLDRL
53
33
0
26 Aug 2019
Likelihood Contribution based Multi-scale Architecture for Generative
  Flows
Likelihood Contribution based Multi-scale Architecture for Generative Flows
Hari Prasanna Das
Pieter Abbeel
C. Spanos
DRLAI4CE
59
5
0
05 Aug 2019
Generative Models for Automatic Chemical Design
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedImAI4CE
87
81
0
02 Jul 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
87
125
0
23 Jun 2019
Shaping Belief States with Generative Environment Models for RL
Shaping Belief States with Generative Environment Models for RL
Karol Gregor
Danilo Jimenez Rezende
F. Besse
Yan Wu
Hamza Merzic
Aaron van den Oord
OffRLAI4CE
126
119
0
21 Jun 2019
Learning-Driven Exploration for Reinforcement Learning
Learning-Driven Exploration for Reinforcement Learning
Muhammad Usama
D. Chang
67
11
0
17 Jun 2019
Stand-Alone Self-Attention in Vision Models
Stand-Alone Self-Attention in Vision Models
Prajit Ramachandran
Niki Parmar
Ashish Vaswani
Irwan Bello
Anselm Levskaya
Jonathon Shlens
VLMSLRViT
123
1,217
0
13 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
216
778
0
10 Jun 2019
MelNet: A Generative Model for Audio in the Frequency Domain
MelNet: A Generative Model for Audio in the Frequency Domain
Sean Vasquez
M. Lewis
DiffM
85
132
0
04 Jun 2019
Understanding the Limitations of Conditional Generative Models
Understanding the Limitations of Conditional Generative Models
Ethan Fetaya
J. Jacobsen
Will Grathwohl
R. Zemel
96
54
0
04 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
84
14
0
31 May 2019
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
Simon A. A. Kohl
Bernardino Romera-Paredes
Klaus H. Maier-Hein
Danilo Jimenez Rezende
S. M. Ali Eslami
Pushmeet Kohli
Andrew Zisserman
Olaf Ronneberger
BDL
84
88
0
30 May 2019
The Variational InfoMax AutoEncoder
The Variational InfoMax AutoEncoder
Vincenzo Crescimanna
Bruce P. Graham
DRL
57
3
0
25 May 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRLOOD
89
206
0
24 May 2019
AttentionRNN: A Structured Spatial Attention Mechanism
AttentionRNN: A Structured Spatial Attention Mechanism
Siddhesh Khandelwal
Leonid Sigal
60
3
0
22 May 2019
Compression with Flows via Local Bits-Back Coding
Compression with Flows via Local Bits-Back Coding
Jonathan Ho
Evan Lohn
Pieter Abbeel
103
54
0
21 May 2019
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Bryan Seybold
Emily Fertig
Alexander A. Alemi
Ian S. Fischer
DRL
89
4
0
17 May 2019
Integer Discrete Flows and Lossless Compression
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
150
160
0
17 May 2019
MoGlow: Probabilistic and controllable motion synthesis using
  normalising flows
MoGlow: Probabilistic and controllable motion synthesis using normalising flows
G. Henter
Simon Alexanderson
Jonas Beskow
94
98
0
16 May 2019
Learning to Groove with Inverse Sequence Transformations
Learning to Groove with Inverse Sequence Transformations
Jon Gillick
Adam Roberts
Jesse Engel
Douglas Eck
David Bamman
SLRBDL
74
81
0
14 May 2019
Improving Opus Low Bit Rate Quality with Neural Speech Synthesis
Improving Opus Low Bit Rate Quality with Neural Speech Synthesis
Jan Skoglund
J. Valin
88
38
0
12 May 2019
Deep Unsupervised Cardinality Estimation
Deep Unsupervised Cardinality Estimation
Zongheng Yang
Eric Liang
Amog Kamsetty
Chenggang Wu
Yan Duan
Peter Chen
Pieter Abbeel
J. M. Hellerstein
S. Krishnan
Ion Stoica
94
208
0
10 May 2019
Generative Model with Dynamic Linear Flow
Generative Model with Dynamic Linear Flow
Huadong Liao
Jiawei He
Kun-xian Shu
DRL
49
5
0
08 May 2019
A Survey on Face Data Augmentation
A Survey on Face Data Augmentation
Xiang Wang
Kai Wang
Kai Wang
CVBM
109
134
0
26 Apr 2019
Generating Long Sequences with Sparse Transformers
Generating Long Sequences with Sparse Transformers
R. Child
Scott Gray
Alec Radford
Ilya Sutskever
140
1,924
0
23 Apr 2019
WaveCycleGAN2: Time-domain Neural Post-filter for Speech Waveform
  Generation
WaveCycleGAN2: Time-domain Neural Post-filter for Speech Waveform Generation
Kou Tanaka
Hirokazu Kameoka
Takuhiro Kaneko
Nobukatsu Hojo
80
19
0
05 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms
  and Applications
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
73
71
0
30 Mar 2019
Small Data Challenges in Big Data Era: A Survey of Recent Progress on
  Unsupervised and Semi-Supervised Methods
Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods
Guo-Jun Qi
Jiebo Luo
SSL
61
246
0
27 Mar 2019
Learning Latent Plans from Play
Learning Latent Plans from Play
Corey Lynch
Mohi Khansari
Ted Xiao
Vikash Kumar
Jonathan Tompson
Sergey Levine
P. Sermanet
SSLLM&Ro
113
408
0
05 Mar 2019
Training Variational Autoencoders with Buffered Stochastic Variational
  Inference
Training Variational Autoencoders with Buffered Stochastic Variational Inference
Rui Shu
Hung Bui
Jay Whang
Stefano Ermon
BDL
50
3
0
27 Feb 2019
GANSynth: Adversarial Neural Audio Synthesis
GANSynth: Adversarial Neural Audio Synthesis
Jesse Engel
Kumar Krishna Agrawal
Shuo Chen
Ishaan Gulrajani
Chris Donahue
Adam Roberts
107
393
0
23 Feb 2019
Adversarially Approximated Autoencoder for Image Generation and
  Manipulation
Adversarially Approximated Autoencoder for Image Generation and Manipulation
Wenju Xu
Shawn Keshmiri
Guanghui Wang
GAN
83
72
0
14 Feb 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDLDRL
88
215
0
06 Feb 2019
Flow++: Improving Flow-Based Generative Models with Variational
  Dequantization and Architecture Design
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
DRL
102
451
0
01 Feb 2019
Latent Normalizing Flows for Discrete Sequences
Latent Normalizing Flows for Discrete Sequences
Zachary M. Ziegler
Alexander M. Rush
BDLDRL
105
129
0
29 Jan 2019
High-Quality Self-Supervised Deep Image Denoising
High-Quality Self-Supervised Deep Image Denoising
S. Laine
Tero Karras
J. Lehtinen
Timo Aila
57
342
0
29 Jan 2019
Previous
12345678
Next