ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Reliable training and estimation of variance networks
Reliable training and estimation of variance networks
N. Detlefsen
Martin Jørgensen
Søren Hauberg
UQCV
117
89
0
04 Jun 2019
Bayesian Evidential Deep Learning with PAC Regularization
Bayesian Evidential Deep Learning with PAC Regularization
Manuel Haussmann
S. Gerwinn
M. Kandemir
UQCVEDLBDL
48
1
0
03 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual
  Estimation with an I/O Kernel
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
90
54
0
03 Jun 2019
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty
  and Adversarial Robustness
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
A. Malinin
Mark Gales
UQCVAAML
90
177
0
31 May 2019
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
BDLUQCV
118
13
0
30 May 2019
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
Simon A. A. Kohl
Bernardino Romera-Paredes
Klaus H. Maier-Hein
Danilo Jimenez Rezende
S. M. Ali Eslami
Pushmeet Kohli
Andrew Zisserman
Olaf Ronneberger
BDL
84
88
0
30 May 2019
Training Data Subset Search with Ensemble Active Learning
Training Data Subset Search with Ensemble Active Learning
Kashyap Chitta
J. Álvarez
Elmar Haussmann
C. Farabet
87
13
0
29 May 2019
Uncertainty Based Detection and Relabeling of Noisy Image Labels
Uncertainty Based Detection and Relabeling of Noisy Image Labels
Jan M. Köhler
Maximilian Autenrieth
William H. Beluch
NoLa
80
28
0
29 May 2019
Deep Factors for Forecasting
Deep Factors for Forecasting
Bernie Wang
Alex Smola
Danielle C. Maddix
Jan Gasthaus
Dean Phillips Foster
Tim Januschowski
BDL
99
175
0
28 May 2019
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Dan Levi
Liran Gispan
Niv Giladi
Ethan Fetaya
UQCV
91
145
0
28 May 2019
Generative Parameter Sampler For Scalable Uncertainty Quantification
Generative Parameter Sampler For Scalable Uncertainty Quantification
Minsuk Shin
Young Lee
Jun S. Liu
55
0
0
28 May 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for
  Deep Neural Networks
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
87
545
0
27 May 2019
ProbAct: A Probabilistic Activation Function for Deep Neural Networks
ProbAct: A Probabilistic Activation Function for Deep Neural Networks
Kumar Shridhar
JoonHo Lee
Hideaki Hayashi
Purvanshi Mehta
Brian Kenji Iwana
Seokjun Kang
S. Uchida
Sheraz Ahmed
Andreas Dengel
DiffMAAML
52
32
0
26 May 2019
Field-aware Calibration: A Simple and Empirically Strong Method for
  Reliable Probabilistic Predictions
Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions
Feiyang Pan
Xiang Ao
Pingzhong Tang
Min Lu
Dapeng Liu
Lei Xiao
Qing He
72
22
0
26 May 2019
Adaptive, Distribution-Free Prediction Intervals for Deep Networks
Adaptive, Distribution-Free Prediction Intervals for Deep Networks
D. Kivaranovic
Kory D. Johnson
Hannes Leeb
OOD
198
89
0
25 May 2019
Hyperparameter-Free Out-of-Distribution Detection Using Softmax of
  Scaled Cosine Similarity
Hyperparameter-Free Out-of-Distribution Detection Using Softmax of Scaled Cosine Similarity
Engkarat Techapanurak
Masanori Suganuma
Takayuki Okatani
OODD
85
29
0
25 May 2019
HDI-Forest: Highest Density Interval Regression Forest
HDI-Forest: Highest Density Interval Regression Forest
Lin Zhu
Jiaxing Lu
Yihong Chen
49
6
0
24 May 2019
Controlling Risk of Web Question Answering
Controlling Risk of Web Question Answering
Lixin Su
Jiafeng Guo
Yixing Fan
Yanyan Lan
Xueqi Cheng
56
9
0
24 May 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
86
97
0
23 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDLUQCV
71
8
0
23 May 2019
Robustness Against Outliers For Deep Neural Networks By Gradient
  Conjugate Priors
Robustness Against Outliers For Deep Neural Networks By Gradient Conjugate Priors
P. Gurevich
Hannes Stuke
29
1
0
21 May 2019
Minimal Achievable Sufficient Statistic Learning
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
75
12
0
19 May 2019
Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active
  Learning
Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning
Mike Walmsley
Lewis Smith
Chris J. Lintott
Y. Gal
S. Bamford
...
K. Masters
C. Scarlata
B. Simmons
R. Smethurst
D. Wright
77
89
0
17 May 2019
Strong and Simple Baselines for Multimodal Utterance Embeddings
Strong and Simple Baselines for Multimodal Utterance Embeddings
Paul Pu Liang
Y. Lim
Yao-Hung Hubert Tsai
Ruslan Salakhutdinov
Louis-Philippe Morency
SSL
59
29
0
14 May 2019
Machine learning in cardiovascular flows modeling: Predicting arterial
  blood pressure from non-invasive 4D flow MRI data using physics-informed
  neural networks
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
139
377
0
13 May 2019
Learning Representations for Predicting Future Activities
Learning Representations for Predicting Future Activities
Mohammadreza Zolfaghari
Özgün Çiçek
S. M. Ali
F. Mahdisoltani
Can Zhang
Thomas Brox
AI4TS
47
6
0
09 May 2019
Conformalized Quantile Regression
Conformalized Quantile Regression
Yaniv Romano
Evan Patterson
Emmanuel J. Candès
498
618
0
08 May 2019
Uncertainty-Aware Data Aggregation for Deep Imitation Learning
Uncertainty-Aware Data Aggregation for Deep Imitation Learning
Yuchen Cui
David Isele
S. Niekum
K. Fujimura
198
27
0
07 May 2019
Are Graph Neural Networks Miscalibrated?
Are Graph Neural Networks Miscalibrated?
Leonardo Teixeira
B. Jalaeian
Bruno Ribeiro
AI4CE
75
22
0
07 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
197
3,042
0
06 May 2019
Better the Devil you Know: An Analysis of Evasion Attacks using
  Out-of-Distribution Adversarial Examples
Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples
Vikash Sehwag
A. Bhagoji
Liwei Song
Chawin Sitawarin
Daniel Cullina
M. Chiang
Prateek Mittal
OODD
77
26
0
05 May 2019
Unsupervised Temperature Scaling: An Unsupervised Post-Processing
  Calibration Method of Deep Networks
Unsupervised Temperature Scaling: An Unsupervised Post-Processing Calibration Method of Deep Networks
A. Mozafari
H. Gomes
Wilson Leão
Christian Gagné
UQCV
63
3
0
01 May 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
96
237
0
30 Apr 2019
Perceptual Attention-based Predictive Control
Perceptual Attention-based Predictive Control
Keuntaek Lee
G. N. An
Viacheslav Zakharov
Evangelos A. Theodorou
70
19
0
26 Apr 2019
Survey of Dropout Methods for Deep Neural Networks
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
80
150
0
25 Apr 2019
Detecting the Unexpected via Image Resynthesis
Detecting the Unexpected via Image Resynthesis
Krzysztof Lis
Krishna Kanth Nakka
Pascal Fua
Mathieu Salzmann
UQCV
80
178
0
16 Apr 2019
A Discussion on Solving Partial Differential Equations using Neural
  Networks
A Discussion on Solving Partial Differential Equations using Neural Networks
Tim Dockhorn
63
62
0
15 Apr 2019
Curious iLQR: Resolving Uncertainty in Model-based RL
Curious iLQR: Resolving Uncertainty in Model-based RL
Sarah Bechtle
Yixin Lin
Akshara Rai
Ludovic Righetti
Franziska Meier
65
34
0
15 Apr 2019
The Fishyscapes Benchmark: Measuring Blind Spots in Semantic
  Segmentation
The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation
Hermann Blum
Paul-Edouard Sarlin
Juan I. Nieto
Roland Siegwart
Cesar Cadena
UQCV
89
159
0
05 Apr 2019
Correlated Parameters to Accurately Measure Uncertainty in Deep Neural
  Networks
Correlated Parameters to Accurately Measure Uncertainty in Deep Neural Networks
K. Posch
J. Pilz
UQCVBDL
112
29
0
02 Apr 2019
Probabilistic Regression of Rotations using Quaternion Averaging and a
  Deep Multi-Headed Network
Probabilistic Regression of Rotations using Quaternion Averaging and a Deep Multi-Headed Network
Valentin Peretroukhin
Brandon Wagstaff
Matthew Giamou
Jonathan Kelly
52
11
0
01 Apr 2019
Data-driven Prognostics with Predictive Uncertainty Estimation using
  Ensemble of Deep Ordinal Regression Models
Data-driven Prognostics with Predictive Uncertainty Estimation using Ensemble of Deep Ordinal Regression Models
T. Vishnu
Diksha Garg
Pankaj Malhotra
Lovekesh Vig
Gautam M. Shroff
UQCV
69
16
0
23 Mar 2019
Data Augmentation for Bayesian Deep Learning
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim Sokolov
UQCVBDL
85
5
0
22 Mar 2019
Interpreting Neural Networks Using Flip Points
Interpreting Neural Networks Using Flip Points
Roozbeh Yousefzadeh
D. O’Leary
AAMLFAtt
47
17
0
21 Mar 2019
Learning Gentle Object Manipulation with Curiosity-Driven Deep
  Reinforcement Learning
Learning Gentle Object Manipulation with Curiosity-Driven Deep Reinforcement Learning
Sandy H. Huang
Martina Zambelli
Jackie Kay
M. Martins
Yuval Tassa
P. Pilarski
R. Hadsell
70
51
0
20 Mar 2019
Crowd Counting with Decomposed Uncertainty
Crowd Counting with Decomposed Uncertainty
Min Hwan Oh
Peder Olsen
Karthikeyan N. Ramamurthy
UQCV
71
109
0
15 Mar 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDLUQCV
67
119
0
09 Mar 2019
Uncertainty-aware performance assessment of optical imaging modalities
  with invertible neural networks
Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks
T. Adler
Lynton Ardizzone
A. Vemuri
Leonardo Ayala
J. Gröhl
...
Sebastian J. Wirkert
Jakob Kruse
Carsten Rother
Ullrich Kothe
Lena Maier-Hein
UQCV
55
31
0
08 Mar 2019
Prostate Segmentation from 3D MRI Using a Two-Stage Model and
  Variable-Input Based Uncertainty Measure
Prostate Segmentation from 3D MRI Using a Two-Stage Model and Variable-Input Based Uncertainty Measure
Huitong Pan
Brandon Yushan Feng
Quan Chen
C. Meyer
Xue Feng
106
16
0
06 Mar 2019
Revisiting the Evaluation of Uncertainty Estimation and Its Application
  to Explore Model Complexity-Uncertainty Trade-Off
Revisiting the Evaluation of Uncertainty Estimation and Its Application to Explore Model Complexity-Uncertainty Trade-Off
Yukun Ding
Jinglan Liu
Jinjun Xiong
Yiyu Shi
61
13
0
05 Mar 2019
Previous
123...6162636465
Next