ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02050
15
13

Revisiting the Evaluation of Uncertainty Estimation and Its Application to Explore Model Complexity-Uncertainty Trade-Off

5 March 2019
Yukun Ding
Jinglan Liu
Jinjun Xiong
Yiyu Shi
ArXivPDFHTML
Abstract

Accurately estimating uncertainties in neural network predictions is of great importance in building trusted DNNs-based models, and there is an increasing interest in providing accurate uncertainty estimation on many tasks, such as security cameras and autonomous driving vehicles. In this paper, we focus on the two main use cases of uncertainty estimation, i.e. selective prediction and confidence calibration. We first reveal potential issues of commonly used quality metrics for uncertainty estimation in both use cases, and propose our new metrics to mitigate them. We then apply these new metrics to explore the trade-off between model complexity and uncertainty estimation quality, a critically missing work in the literature. Our empirical experiment results validate the superiority of the proposed metrics, and some interesting trends about the complexity-uncertainty trade-off are observed.

View on arXiv
Comments on this paper