ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.13310
13
149

Survey of Dropout Methods for Deep Neural Networks

25 April 2019
Alex Labach
Hojjat Salehinejad
S. Valaee
ArXivPDFHTML
Abstract

Dropout methods are a family of stochastic techniques used in neural network training or inference that have generated significant research interest and are widely used in practice. They have been successfully applied in neural network regularization, model compression, and in measuring the uncertainty of neural network outputs. While original formulated for dense neural network layers, recent advances have made dropout methods also applicable to convolutional and recurrent neural network layers. This paper summarizes the history of dropout methods, their various applications, and current areas of research interest. Important proposed methods are described in additional detail.

View on arXiv
Comments on this paper