ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Density estimation in representation space to predict model uncertainty
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCVBDL
57
40
0
20 Aug 2019
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adria Ruiz
Jakob Verbeek
VLM
65
22
0
19 Aug 2019
Entropic Out-of-Distribution Detection
Entropic Out-of-Distribution Detection
David Macêdo
T. I. Ren
Cleber Zanchettin
Adriano Oliveira
Teresa B Ludermir
OODDUQCV
68
33
0
15 Aug 2019
Improved Adversarial Robustness by Reducing Open Space Risk via Tent
  Activations
Improved Adversarial Robustness by Reducing Open Space Risk via Tent Activations
Andras Rozsa
Terrance E. Boult
AAML
61
18
0
07 Aug 2019
Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech
  Recognition Systems
Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech Recognition Systems
Lea Schonherr
Thorsten Eisenhofer
Steffen Zeiler
Thorsten Holz
D. Kolossa
AAML
130
65
0
05 Aug 2019
Ensemble Neural Networks (ENN): A gradient-free stochastic method
Ensemble Neural Networks (ENN): A gradient-free stochastic method
Yuntian Chen
Haibin Chang
J. Meng
Dongxiao Zhang
UQCVBDL
78
44
0
03 Aug 2019
Simultaneous Semantic Segmentation and Outlier Detection in Presence of
  Domain Shift
Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift
Petra Bevandić
Ivan Kreso
Marin Orsic
Sinisa Segvic
84
82
0
03 Aug 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCVUDPERBDL
147
140
0
01 Aug 2019
Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration
Chen Zhang
Bangti Jin
UQCV
92
12
0
01 Aug 2019
Uncertainty Quantification in Deep Learning for Safer Neuroimage
  Enhancement
Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement
Ryutaro Tanno
Daniel E. Worrall
Enrico Kaden
Aurobrata Ghosh
Francesco Grussu
A. Bizzi
S. Sotiropoulos
A. Criminisi
Daniel C. Alexander
MedImDiffM
104
33
0
31 Jul 2019
Curriculum based Dropout Discriminator for Domain Adaptation
Curriculum based Dropout Discriminator for Domain Adaptation
V. Kurmi
Vipul Bajaj
K. Venkatesh
Vinay P. Namboodiri
OOD
96
14
0
24 Jul 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
81
115
0
24 Jul 2019
Mitigating Uncertainty in Document Classification
Mitigating Uncertainty in Document Classification
Xuchao Zhang
Fanglan Chen
Chang-Tien Lu
Naren Ramakrishnan
62
43
0
17 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
97
144
0
17 Jul 2019
A General Framework for Uncertainty Estimation in Deep Learning
A General Framework for Uncertainty Estimation in Deep Learning
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
UQCVBDLOOD
101
293
0
16 Jul 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Vector Quantized Bayesian Neural Network Inference for Data Streams
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
59
10
0
12 Jul 2019
Assessing Reliability and Challenges of Uncertainty Estimations for
  Medical Image Segmentation
Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation
Alain Jungo
M. Reyes
UQCV
145
137
0
07 Jul 2019
Prior Activation Distribution (PAD): A Versatile Representation to
  Utilize DNN Hidden Units
Prior Activation Distribution (PAD): A Versatile Representation to Utilize DNN Hidden Units
L. Meegahapola
Vengateswaran Subramaniam
Lance M. Kaplan
Archan Misra
45
2
0
05 Jul 2019
Generalizing from a few environments in safety-critical reinforcement
  learning
Generalizing from a few environments in safety-critical reinforcement learning
Zachary Kenton
Angelos Filos
Owain Evans
Y. Gal
84
16
0
02 Jul 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale
  Bayesian Deep Learning
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCVBDL
106
58
0
01 Jul 2019
Deep Gamblers: Learning to Abstain with Portfolio Theory
Deep Gamblers: Learning to Abstain with Portfolio Theory
Liu Ziyin
Zhikang T. Wang
Paul Pu Liang
Ruslan Salakhutdinov
Louis-Philippe Morency
Masahito Ueda
109
114
0
29 Jun 2019
Certifiable Robustness and Robust Training for Graph Convolutional
  Networks
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Daniel Zügner
Stephan Günnemann
OffRL
85
163
0
28 Jun 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDLUQCV
73
121
0
27 Jun 2019
Active Learning Solution on Distributed Edge Computing
Active Learning Solution on Distributed Edge Computing
Jia Qian
Sayantani Sengupta
Lars Kai Hansen
56
20
0
25 Jun 2019
Uncertainty-aware Model-based Policy Optimization
Uncertainty-aware Model-based Policy Optimization
Tung-Long Vuong
Kenneth Tran
42
11
0
25 Jun 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCVBDL
193
114
0
24 Jun 2019
Confidence Calibration for Convolutional Neural Networks Using
  Structured Dropout
Confidence Calibration for Convolutional Neural Networks Using Structured Dropout
Zhilu Zhang
Adrian Dalca
M. Sabuncu
UQCVBDL
67
48
0
23 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
92
125
0
23 Jun 2019
Calibrated Model-Based Deep Reinforcement Learning
Calibrated Model-Based Deep Reinforcement Learning
Ali Malik
Volodymyr Kuleshov
Jiaming Song
Danny Nemer
Harlan Seymour
Stefano Ermon
154
55
0
19 Jun 2019
Adaptive Temporal-Difference Learning for Policy Evaluation with
  Per-State Uncertainty Estimates
Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates
Hugo Penedones
C. Riquelme
Damien Vincent
Hartmut Maennel
Timothy A. Mann
André Barreto
Sylvain Gelly
Gergely Neu
OffRL
38
10
0
19 Jun 2019
Batch Active Learning Using Determinantal Point Processes
Batch Active Learning Using Determinantal Point Processes
Erdem Biyik
Kenneth Wang
Nima Anari
Dorsa Sadigh
109
62
0
19 Jun 2019
Quantifying and Leveraging Classification Uncertainty for Chest
  Radiograph Assessment
Quantifying and Leveraging Classification Uncertainty for Chest Radiograph Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Eli Gibson
Sebastian Gündel
Mannudeep K. Kalra
Ramandeep Singh
S. Digumarthy
Sasa Grbic
Dorin Comaniciu
UQCV
55
46
0
18 Jun 2019
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep
  Ensembles
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep Ensembles
Siddhartha Jain
Ge Liu
Jonas W. Mueller
David K Gifford
UQCV
61
62
0
18 Jun 2019
MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty
  Estimation
MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty Estimation
Lorenzo Bertoni
S. Kreiss
Alexandre Alahi
UQCV
86
117
0
14 Jun 2019
Selective prediction-set models with coverage guarantees
Selective prediction-set models with coverage guarantees
Jean Feng
A. Sondhi
Jessica Perry
N. Simon
62
8
0
13 Jun 2019
Efficient Evaluation-Time Uncertainty Estimation by Improved
  Distillation
Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation
Erik Englesson
Hossein Azizpour
UQCV
74
9
0
12 Jun 2019
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical
  Bayes
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes
R. Krishnan
Mahesh Subedar
Omesh Tickoo
BDL
71
47
0
12 Jun 2019
Search on the Replay Buffer: Bridging Planning and Reinforcement
  Learning
Search on the Replay Buffer: Bridging Planning and Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
OffRL
92
293
0
12 Jun 2019
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
120
82
0
12 Jun 2019
Tackling Climate Change with Machine Learning
Tackling Climate Change with Machine Learning
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4ClAI4CE
110
815
0
10 Jun 2019
Analyzing the Role of Model Uncertainty for Electronic Health Records
Analyzing the Role of Model Uncertainty for Electronic Health Records
Michael W. Dusenberry
Dustin Tran
Edward Choi
Jonas Kemp
Jeremy Nixon
Ghassen Jerfel
Katherine A. Heller
Andrew M. Dai
96
118
0
10 Jun 2019
Attending to Discriminative Certainty for Domain Adaptation
Attending to Discriminative Certainty for Domain Adaptation
V. Kurmi
Shanu Kumar
Vinay P. Namboodiri
OOD
80
108
0
08 Jun 2019
Class-specific Differential Detection in Diffractive Optical Neural
  Networks Improves Inference Accuracy
Class-specific Differential Detection in Diffractive Optical Neural Networks Improves Inference Accuracy
Jingxi Li
Deniz Mengu
Yilin Luo
Y. Rivenson
Aydogan Ozcan
119
111
0
08 Jun 2019
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep
  Networks
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
Aryan Mobiny
H. Nguyen
S. Moulik
Naveen Garg
Carol C. Wu
UQCVBDL
76
163
0
07 Jun 2019
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
Christian F. Baumgartner
K. Tezcan
K. Chaitanya
A. Hötker
Urs J. Muehlematter
K. Schawkat
Anton S. Becker
O. Donati
E. Konukoglu
UQCV
91
204
0
07 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
246
728
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
197
1,707
0
06 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDLUQCV
167
247
0
06 Jun 2019
CCMI : Classifier based Conditional Mutual Information Estimation
CCMI : Classifier based Conditional Mutual Information Estimation
Sudipto Mukherjee
Himanshu Asnani
Sreeram Kannan
VLM
127
81
0
05 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OODUQCVBDL
82
301
0
04 Jun 2019
Previous
123...606162636465
Next